52 research outputs found

    Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements

    Get PDF
    Coal mining accounts for ~12% of the total anthropogenic methane (CH4) emissions worldwide. The Upper Silesian Coal Basin (USCB), Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coal bed CH4 emissions into the atmosphere are poorly characterized. As part of the carbon dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May-June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150-300m downwind of five individual ventilation shafts in the USCB. In addition, we also measured ÎŽ13C-CH4, ÎŽ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speed, and surface wind direction. We used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2Combining double low line0.7-0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified. As an alternative, we have developed three upscaling approaches, i.e., by scaling the European Pollutant Release and Transfer Register (E-PRTR) annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate, which are derived from the hourly emission inventory. These estimates are in the range of 256-383ktCH4yr-1 for the inverse Gaussian (IG) approach and 228-339ktCH4yr-1 for the mass balance (MB) approach. We have also estimated the total CO2 emissions from coal mining ventilation shafts based on the observed ratio of CH4/CO2 and found that the estimated regional CO2 emissions are not a major source of CO2 in the USCB. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions

    Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements

    Get PDF
    Coal mining accounts for ~12% of the total anthropogenic methane (CH4) emissions worldwide. The Upper Silesian Coal Basin (USCB), Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coal bed CH4 emissions into the atmosphere are poorly characterized. As part of the carbon dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May-June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150-300m downwind of five individual ventilation shafts in the USCB. In addition, we also measured ÎŽ13C-CH4, ÎŽ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speed, and surface wind direction. We used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2Combining double low line0.7-0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified. As an alternative, we have developed three upscaling approaches, i.e., by scaling the European Pollutant Release and Transfer Register (E-PRTR) annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate, which are derived from the hourly emission inventory. These estimates are in the range of 256-383ktCH4yr-1 for the inverse Gaussian (IG) approach and 228-339ktCH4yr-1 for the mass balance (MB) approach. We have also estimated the total CO2 emissions from coal mining ventilation shafts based on the observed ratio of CH4/CO2 and found that the estimated regional CO2 emissions are not a major source of CO2 in the USCB. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions.</p

    Stable isotopic signatures of methane from waste sources through atmospheric measurements

    Get PDF
    This study aimed to characterize the carbon isotopic signatures (ÎŽ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize ÎŽ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The ÎŽ13C-CH4 and ÎŽ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for ÎŽ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for ÎŽ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that ÎŽ2H-CH4 signatures, in addition to ÎŽ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling

    Local to regional methane emissions from the Upper Silesia Coal Basin (USCB) quantified using UAV-based atmospheric measurements

    Get PDF
    Coal mining accounts for ~ 12 % of the total anthropogenic methane emissions worldwide. The Upper Silesian Coal Basin, Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coalbed CH4 emissions into the atmosphere are poorly characterized. As part of the Carbon Dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May – June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150–300 m downwind of five individual ventilation shafts in the USCB. In addition, we also measured ή13C-CH4, ή2H-CH4, ambient temperature, pressure, relative humidity, surface wind speeds and directions. We have used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data, and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2 = 0.7 – 0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified though. As an alternative, we have developed three upscaling approaches, i.e., by scaling the E-PRTR annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate that are derived from the hourly emission inventory. These estimates are in the range of 325 – 447 kt CH4/year for the inverse Gaussian approach and 268 – 347 kt CH4/year for the mass balance approach, respectively. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions

    Local to regional methane emissions from the Upper Silesia Coal Basin (USCB) quantified using UAV-based atmospheric measurements

    Get PDF
    Coal mining accounts for ~ 12 % of the total anthropogenic methane emissions worldwide. The Upper Silesian Coal Basin, Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coalbed CH4 emissions into the atmosphere are poorly characterized. As part of the Carbon Dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May – June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150–300 m downwind of five individual ventilation shafts in the USCB. In addition, we also measured ή13C-CH4, ή2H-CH4, ambient temperature, pressure, relative humidity, surface wind speeds and directions. We have used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data, and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2 = 0.7 – 0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified though. As an alternative, we have developed three upscaling approaches, i.e., by scaling the E-PRTR annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate that are derived from the hourly emission inventory. These estimates are in the range of 325 – 447 kt CH4/year for the inverse Gaussian approach and 268 – 347 kt CH4/year for the mass balance approach, respectively. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions

    Source apportionment of methane emissions from the Upper Silesian Coal Basin using isotopic signatures

    Get PDF
    During the CoMet mission in the Upper Silesian Coal Basin (USCB) ground-based and airborne air samples were taken, and analyzed for the isotopic composition of CH4 to derive the mean signature of the USCB and the source signatures of individual coal mines. Using ή2H signatures, the biogenic emissions from the USCB account for 15–50 % of total emissions, which is underestimated in common emission inventories. This demonstrates the importance of ή2H-CH4 observations for methane source attribution

    New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane

    Get PDF
    Recent climate change mitigation strategies rely on the reduction of methane (CH4) emissions. Carbon and hydrogen isotope ratio (ÎŽ13CCH4 and ÎŽ2HCH4) measurements can be used to distinguish sources and thus to understand the CH4 budget better. The CH4 emission estimates by models are sensitive to the isotopic signatures assigned to each source category, so it is important to provide representative estimates of the different CH4 source isotopic signatures worldwide. We present new measurements of isotope signatures of various, mainly anthropogenic, CH4 sources in Europe, which represent a substantial contribution to the global dataset of source isotopic measurements from the literature, especially for ÎŽ2HCH4. They improve the definition of ÎŽ13CCH4 from waste sources, and demonstrate the use of ÎŽ2HCH4 for fossil fuel source attribution. We combined our new measurements with the last published database of CH4 isotopic signatures and with additional literature, and present a new global database. We found that microbial sources are generally well characterised. The large variability in fossil fuel isotopic compositions requires particular care in the choice of weighting criteria for the calculation of a representative global value. The global dataset could be further improved by measurements from African, South American, and Asian countries, and more measurements from pyrogenic sources. We improved the source characterisation of CH4 emissions using stable isotopes and associated uncertainty, to be used in top-down studies. We emphasise that an appropriate use of the database requires the analysis of specific parameters in relation to source type and the region of interest. The final version of the European CH4 isotope database coupled with a global inventory of fossil and non-fossil ÎŽ13CCH4 and ÎŽ2HCH4 source signature measurements is available at 10.24416/UU01-YP43IN

    Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions

    Get PDF
    In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies can assist with verification and improvement in the UNFCCC National Inventory reported CH4 emissions. In the Surat Basin gas fields, Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the major sources of CH4 emissions into the atmosphere. Because of the rapid mixing of adjacent plumes within the convective boundary layer, spatially attributing CH4(a) mole fraction readings to one or more emission sources is difficult. The primary aims of this study were to use the CH4(a) isotopic composition (13CCH4(a)) of in-flight atmospheric air (IFAA) samples to assess where the bottom-up (BU) inventory developed specifically for the region was well characterised and to identify gaps in the BU inventory (missing sources or over- and underestimated source categories). Secondary aims were to investigate whether IFAA samples collected downwind of predominantly similar inventory sources were useable for characterising the isotopic signature of CH4 sources (13CCH4(s)) and to identify mitigation opportunities. IFAA samples were collected between 100-350m above ground level (ma.g.l.) over a 2-week period in September 2018. For each IFAA sample the 2h back-trajectory footprint area was determined using the NOAA HYSPLIT atmospheric trajectory modelling application. IFAA samples were gathered into sets, where the 2h upwind BU inventory had >50% attributable to a single predominant CH4 source (CSG, grazing cattle, or cattle feedlots). Keeling models were globally fitted to these sets using multiple regression with shared parameters (background-air CH4(b) and 13CCH4(b)). For IFAA samples collected from 250-350ma.g.l. altitude, the best-fit 13CCH4(s) signatures compare well with the ground observation: CSG 13CCH4(s) of -55.4‰ (confidence interval (CI) 95%±13.7‰) versus 13CCH4(s) of -56.7‰ to -45.6‰; grazing cattle 13CCH4(s) of -60.5‰ (CI 95%±15.6‰) versus -61.7‰ to -57.5‰. For cattle feedlots, the derived 13CCH4(s) (-69.6‰, CI 95%±22.6‰), was isotopically lighter than the ground-based study (13CCH4(s) from -65.2‰ to -60.3‰) but within agreement given the large uncertainty for this source. For IFAA samples collected between 100-200ma.g.l. the 13CCH4(s) signature for the CSG set (-65.4‰, CI 95%±13.3‰) was isotopically lighter than expected, suggesting a BU inventory knowledge gap or the need to extend the population statistics for CSG 13CCH4(s) signatures. For the 100-200ma.g.l. set collected over grazing cattle districts the 13CCH4(s) signature (-53.8‰, CI 95%±17.4‰) was heavier than expected from the BU inventory. An isotopically light set had a low 13CCH4(s) signature of -80.2‰ (CI 95%±4.7‰). A CH4 source with this low 13CCH4(s) signature has not been incorporated into existing BU inventories for the region. Possible sources include termites and CSG brine ponds. If the excess emissions are from the brine ponds, they can potentially be mitigated. It is concluded that in-flight atmospheric 13CCH4(a) measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful tools for BU inventory verification

    Reproductive and trans-generational effect of ocean acidification and warming on the coral Stylophora pistillata in the Gulf of Aqaba

    No full text
    Global warming is threatening 75 % of the world’s coral reefs. The reproduction of corals is a driver for the development of the whole reef ecosystem. Then, it is essential to better understand the transgenerational mechanisms in the response of parents and offspring to elevated temperature and lowered pH. Colonies of Stylophora pistillata from the Gulf of Aqaba during their reproduction period were exposed to a 4°C increase in temperature and a pH of 7.6 for 36 days, then a 6°C increase for six days. Planulae were counted on seven consecutive nights, two times during the experiment period. Physiological characteristics of adult and planulae were assessed on four and five sampling points respectively, as well as the behaviour of the planulae through their incubation. Results show no effect of OWA on the reproduction, parents, and planulae physiology. They suggest that the natural resistance of corals in the Gulf of Aqaba is transmitted from parent to offspring. Data on planulae quantity, survival, settlement, and metabolism provides additional and useful information to understand the biology of this coral, specially in its early-life stage. This study’s outcome is adding evidences of the future development of corals reefs in this region, unlike several other tropical reefs in the world

    Isotopic characterisation of atmospheric methane at different locations in Europe

    No full text
    Reducing methane (CH4) emissions has a great potential for climate change mitigation. However, uncertainties remain in the CH4 budget: the emissions calculated from atmospheric observations do not match the ones reported in inventories. The stable isotopic composition of methane, which is the proportion of heavier molecules compare to the most abundant form, provide information on the formation pathway. Therefore, measurements data on two isotopes of CH4, carbon 13 (d13C-CH4) and deuterium (d2H-CH4), allowed us to evaluate the emission inventories and investigate spatial variations in Europe. We performed continuous measurements of ambient air over several months at fixed locations, in order to evaluate the influence of specific methane sources over a region. The CH4 isotopic composition data from in the North coast of the Netherlands and in the city of Krakow, Poland, were dramatically different. Biogenic sources, mostly of anthropogenic origin, such as from ruminant farming or waste management, are prominant in the Netherlands, as suggested by the emissison inventories. In Krakow, we detected large emissions from coal mines, but also from the city. The latter are not always reported in inventories, and appear to come from the use of fossil fuels, for exemple the use of coal for residential heating. The uses of d2H-CH4 as a tracer was particularly useful in the case of Poland, as there is an overlap in the d13C-CH4 from biogenic and fossil fuel sources. We showed that time series of CH4 isotopic composition in ambient air can help to assess emission inventories. A large measurement campaign was organised in Romania, focusing on methane emissions from the oil and gas industry. The exploitation of fossil fuels is causing direct emissions of CH4 through leaks. We took samples close to oil and gas installations, but also while flying a scientific aicraft over the regions of extraction. The isotopic composition of CH4 from Romania was hardly studied until now, and we created an unprecedented dataset from our samples. We attributed most pollution of the regions we surveyed to the oil and gas industry. We identified microbial pathways in the subsurface formations that would help interpreting atmospheric data on larger scales. We gathered all measurements in a publicly available database, and combined with the previous literature. Over Europe, we found strong regional variations in the isotopic composition from fossil fuel sources but not from microbial sources. Our dataset brings new tools for the interpretation of methane stable isotope data, especially by providing a significant amount of new d2H-CH4 observations. Future studies can use it for source attribution, and as input to atmospheric models
    • 

    corecore