6,157 research outputs found

    Chern-Simons theory and atypical Hall conductivity in the Varma phase

    Full text link
    In this letter, we analyze the topological response of a fermionic model defined on the Lieb lattice in presence of an electromagnetic field. The tight-binding model is built in terms of three species of spinless fermions and supports a topological Varma phase due to the spontaneous breaking of time-reversal symmetry. In the low-energy regime, the emergent effective Hamiltonian coincides with the so-called Duffin-Kemmer-Petiau (DKP) Hamiltonian, which describes relativistic pseudospin-0 quasiparticles. By considering a minimal coupling between the DKP quasiparticles and an external Abelian gauge field, we calculate both the Landau-level spectrum and the emergent Chern-Simons theory. The corresponding Hall conductivity reveals an atypical quantum Hall effect, which can be simulated in an artificial Lieb lattice.Comment: 5 pages, 3 figures; New version with an improved discussion about our finding

    Markovian versus non-Markovian stochastic quantization of a complex-action model

    Full text link
    We analyze the Markovian and non-Markovian stochastic quantization methods for a complex action quantum mechanical model analog to a Maxwell-Chern-Simons eletrodynamics in Weyl gauge. We show through analytical methods convergence to the correct equilibrium state for both methods. Introduction of a memory kernel generates a non-Markovian process which has the effect of slowing down oscillations that arise in the Langevin-time evolution toward equilibrium of complex action problems. This feature of non-Markovian stochastic quantization might be beneficial in large scale numerical simulations of complex action field theories on a lattice.Comment: Accepted for publication in the International Journal of Modern Physics

    Conformal QED in two-dimensional topological insulators

    Full text link
    It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this non-Fermi-liquid phase based on the gauge-theory approach. Firstly, we derive a gauge theory for the edge states by simply assuming that the interactions between the Dirac fermions at the edge are mediated by a quantum dynamical electromagnetic field. Here, the massless Dirac fermions are confined to live on the one-dimensional boundary, while the (virtual) photons of the U(1) gauge field are free to propagate in all the three spatial dimensions that represent the physical space where the topological insulator is embedded. We then determine the effective 1+1-dimensional conformal field theory (CFT) given by the conformal quantum electrodynamics (CQED). By integrating out the gauge field in the corresponding partition function, we show that the CQED gives rise to a 1+1-dimensional Thirring model. The bosonized Thirring Hamiltonian describes exactly a HLL with a parameter K and a renormalized Fermi velocity that depend on the value of the fine-structure constant α\alpha.Comment: (5+4) pages, 2 figure
    • …
    corecore