117 research outputs found

    The effects of supervised exercise training 12–24 months after bariatric surgery on physical function and body composition: a randomised controlled trial

    Get PDF
    Background:Bariatric surgery is effective for the treatment of stage II and III obesity and its related diseases, although increasing evidence is showing weight regain ~12–24 months postsurgery. Weight regain increases the risk of physical function decline, which negatively affects an individual's ability to undertake activities of daily living. The study assessed the effects of a 12-week supervised exercise intervention on physical function and body composition in patients between 12 and 24 months post bariatric surgery.Methods:Twenty-four inactive adult bariatric surgery patients whose body mass index remained ⩾30 kg m2 12 to 24 months post surgery were randomised to an exercise intervention (n=12) or control group (n=12). Supervised exercise consisted of three 60-min gym sessions per week of moderate intensity aerobic and resistance training for 12 weeks. Control participants received usual care. The incremental shuttle walk test (ISWT) was used to assess functional walking performance after the 12-week exercise intervention, and at 24 weeks follow-up. Measures of anthropometric, physical activity, cardiovascular and psychological outcomes were also examined. Using an intention-to-treat protocol, independent t-tests were used to compare outcome measures between groups.Results:Significant improvements in the exercise group were observed for the ISWT, body composition, physical function, cardiovascular and self-efficacy measures from baseline to 12 weeks. A large baseline to 12-week change was observed for the ISWT (exercise: 325.00±117.28 m; control: 355.00±80.62 m, P<0.001). The exercise group at 24 weeks recorded an overall mean improvement of 143.3±86.6 m and the control group recorded a reduction of −32.50±75.93 m. Findings show a 5.6 kg difference between groups in body mass change from baseline to 24 weeks favouring the exercise group.Conclusions:A 12-week supervised exercise intervention led to significant improvements in body mass and functional walking ability post intervention, with further improvements at the 24-week follow-up

    Changes in physical activity behaviour and physical function after bariatric surgery: A systematic review and meta-analysis

    Get PDF
    © 2016 World Obesity. Although physical activity performed after bariatric surgery is associated with enhanced weight loss outcomes, there is limited information on patients' physical activity behaviour in this context. This systematic review and meta-analysis assessed pre-operative to post-operative changes in physical activity and physical function outcomes among obese adults undergoing bariatric surgery. A total of 50 studies met inclusion criteria with 26 papers reporting data for meta-analysis. Increases in both objectively recorded and self-reported physical activity at 12months were demonstrated. Studies indicated that there was a shift towards a greater amount of active time, but of a lower intensity within the first 6months of bariatric surgery, suggested by a reduction in moderate to vigorous physical activity but an increase in step count. A standardized mean difference (SMD) of 1.53 (95% CI: 1.02-2.04) based on nine studies indicated improved walking performance at 12months. Similarly, analysis of five studies demonstrated increased musculoskeletal function at 3-6months (SMD: 1.51; 95% CI: 0.60-2.42). No relationship was identified between changes in weight and walking performance post-surgery. More studies assessing physical activity, physical function and weight loss would help understand the role of physical activity in optimizing post-operative weight and functional outcomes

    Associations of objectively measured moderate-to-vigorous-intensity physical activity and sedentary time with all-cause mortality in a population of adults at high risk of type 2 diabetes mellitus

    Get PDF
    The relationships of physical activity and sedentary time with all-cause mortality in those at high risk of type 2 diabetes mellitus (T2DM) are unexplored. To address this gap in knowledge,we examined the associations of objectively measured moderate-to-vigorous-intensity physical activity (MVPA) and sedentary time with all-cause mortality in a population of adults at high risk of T2DM. In 2010–2011, 712 adults (Leicestershire, U.K.), identified as being at high risk of T2DM, consented to be followed up for mortality.MVPA and sedentary time were assessed by accelerometer; those with valid data (≥10 hours of wear-time/day with ≥4 days of data) were included. Cox proportional hazards regression models, adjusted for potential confounders, were used to investigate the independent associations of MVPA and sedentary time with all-cause mortality. 683 participants (250 females (36.6%)) were included and during a mean follow-up period of 5.7 years, 26 deaths were registered. Every 10% increase in MVPA time/day was associated with a 5% lower risk of all-cause mortality [Hazard Ratio (HR): 0.95 (95% Confidence Interval (95% CI): 0.91, 0.98); p=0.004]; indicating that for the average adult in this cohort undertaking approximately 27.5 minutes of MVPA/day, this benefit would be associated with only 2.75 additional minutes of MVPA/day. Conversely, sedentary time showed no association with all-cause mortality [HR (every 10-minute increase in sedentary time/day): 0.99 (95% CI: 0.95, 1.03); p=0.589]. These data support the importance of MVPA in adults at high risk of T2DM. The association between sedentary time and mortality in this population needs further investigation

    Association between lifestyle factors and the incidence of multimorbidity in an older English population.

    Get PDF
    Background: Evidence on the role of lifestyle factors in relation to multimorbidity, especially in elderly populations, is scarce. We assessed the association between five lifestyle factors and incident multimorbidity (presence of ≥2 chronic conditions) in an English cohort aged ≥50 years. Methods: We used data from wave 4, 5 and 6 of the English Longitudinal Study of Ageing. Data on smoking, alcohol consumption, physical activity, fruit and vegetable consumption and BMI were extracted and combined to generate a sum of unhealthy lifestyle factors for each individual. We examined whether these lifestyle factors individually or in combination predicted during the subsequent wave. We used marginal structural Cox proportional hazard models, adjusted for both time-constant and time-varying factors. Results: A total of 5,476 participants contributed 232,749 person-months of follow-up during which 1,156 cases of incident multimorbidity were recorded. Physical inactivity increased the risk of multimorbidity by 33% (adjusted Hazard Ratio (aHR) 1.33, 95% CI 1.03-1.73). The risk was about two-three times higher when inactivity was combined with obesity (aHR 2.87, 95% CI 1.55-5.31) or smoking (aHR 2.35, 95% CI 1.36-4.08) and about four times when combined with both (aHR 3.98, 95% CI 1.02-17.00). Any combination of 2, 3 and 4 or more unhealthy lifestyle factors significantly increased the multimorbidity hazard, compared to none, from 42% to 114%. Conclusion: This study provides evidence of a temporal association between combinations of different unhealthy lifestyle factors with multimorbidity. Population level interventions should include reinforcing positive lifestyle changes in the population to reduce the risk of developing multimorbidity

    Fitness moderates glycemic responses to sitting and light activity breaks

    Get PDF
    Purpose: Regular engagement in sedentary behaviours can lead to major public health consequences. This study aimed to experimentally determine whether cardio-respiratory fitness modifies postprandial glycemia during prolonged sitting and investigated the potentially blunting influence this may have upon the benefits of interrupting postprandial sitting time with light activity breaks. Methods: Thirty–four adult volunteers (18female; 16male; mean±SD age: 40±9 years, BMI: 24.5±3 kg/m2) undertook two 7·5 hour experimental conditions in a randomized order: 1) Prolonged sitting; 2) Sitting interspersed with 5 minute light walking bouts every 30minutes. Blood samples were obtained while fasting and throughout the postprandial period following ingestion of two identical meals. Incremental Area Under the Curve (iAUC) was calculated for glucose and insulin throughout each experimental condition. Maximal exercise testing quantified VO2 peak as a measure of cardiorespiratory fitness (CRF) prior to experimental conditions. A repeated measures ANOVA investigated whether VO2 peak modified iAUC data between conditions. This trial is registered with ClinicalTrials.gov (Reg no.NCT0493309). Results: Interrupting prolonged sitting time with light walking breaks reduced blood glucose iAUC from 3.89 ± 0.7 to 2·51 ± 0.7 mmol·L-1·h (p = 0.015) and insulin iAUC from 241 ± 46 to 156 ± 24 mU·L-1·h (p = 0.013) after adjustment for VO2 peak and sex. A significant interaction between treatment response and VO2 peak was observed for glucose (p = 0.035), but not insulin (p = 0.062), whereby the treatment effect reduced with higher levels of fitness. Average blood glucose iAUC responses for a man at the 25th centile of CRF (42.5 mL∙kg-1∙min-1) within our cohort went from 5.80 to 2.98 mmol·L-1·h during the prolonged sitting and light walking breaks conditions respectively, whereas average responses for a man at the 75th centile of CRF (60.5 mL∙kg-1∙min-1) went from 1.99 to 1.78 mmol·L-1·h. Similar trends were observed for women. Conclusions: Individuals with low levels of CRF gained the most metabolic benefit from breaking prolonged sitting with regular bouts of light walking. Future interventions aimed at alleviating the deleterious impacts of sedentary behavior may be optimized by tailoring to cardio-respiratory fitness levels within the general population

    Stand More AT Work (SMArT Work): using the behaviour change wheel to develop an intervention to reduce sitting time in the workplace

    Get PDF
    Background: Sitting (sedentary behaviour) is widespread among desk-based office workers and a high level of sedentary behaviour is a risk factor for poor health. Reducing workplace sitting time is therefore an important prevention strategy. Interventions are more likely to be effective if they are theory and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. This article describes the development of the Stand More AT Work (SMArT Work) intervention, which aims to reduce sitting time among National Health Service (NHS) office-based workers in Leicester, UK. Methods: We followed the BCW guide and used the Capability, Opportunity and Motivation Behaviour (COM-B) model to conduct focus group discussions with 39 NHS office workers. With these data we used the taxonomy of Behaviour Change Techniques (BCTv1) to identify the most appropriate strategies for facilitating behaviour change in our intervention. To identify the best method for participants to self-monitor their sitting time, a sub-group of participants (n = 31) tested a number of electronic self-monitoring devices. Results: From our BCW steps and the BCT-Taxonomy we identified 10 behaviour change strategies addressing environmental (e.g. provision of height adjustable desks,), organisational (e.g. senior management support, seminar), and individual level (e.g. face-to-face coaching session) barriers. The Darma cushion scored the highest for practicality and acceptability for self-monitoring sitting. Conclusion: The BCW guide, COM-B model and BCT-Taxonomy can be applied successfully in the context of designing a workplace intervention for reducing sitting time through standing and moving more. The intervention was developed in collaboration with office workers (a participatory approach) to ensure relevance for them and their work situation. The effectiveness of this intervention is currently being evaluated in a randomised controlled trial

    Non-exercise equations to estimate fitness in white European and South Asian men

    Get PDF
    © 2015 American College of Sports Medicine PURPOSE: Cardiorespiratory fitness is a strong, independent predictor of health, whether it is measured in an exercise test or estimated in an equation. The purpose of this study was to develop and validate equations to estimate fitness in middle-aged white European and South Asian men. METHODS: Multiple linear regression models (n=168, including 83 white European and 85 South Asian men) were created using variables that are thought to be important in predicting fitness (VO2 max, mL⋅kg⋅min): age (years); BMI (kg·m); resting heart rate (beats⋅min); smoking status (0=never smoked, 1=ex or current smoker); physical activity expressed as quintiles (0=quintile 1, 1=quintile 2, 2=quintile 3, 3=quintile 4, 4=quintile 5), categories of moderate- to vigorous-intensity physical activity (0=150-225 min⋅wk, 3=>225-300 min⋅wk, 4=>300 min⋅wk), or minutes of moderate- to vigorous-intensity physical activity (min⋅wk); and, ethnicity (0=South Asian, 1=white). The leave-one-out-cross-validation procedure was used to assess the generalizability and the bootstrap and jackknife resampling techniques were used to estimate the variance and bias of the models. RESULTS: Around 70% of the variance in fitness was explained in models with an ethnicity variable, such as: VO2 max = 77.409 - (age*0.374) – (BMI*0.906) – (ex or current smoker*1.976) + (physical activity quintile coefficient) – (resting heart rate*0.066) + (white ethnicity*8.032), where physical activity quintile 1 is 1, 2 is 1.127, 3 is 1.869, 4 is 3.793, and 5 is 3.029. Only around 50% of the variance was explained in models without an ethnicity variable. All models with an ethnicity variable were generalizable and had low variance and bias. CONCLUSION: These data demonstrate the importance of incorporating ethnicity in non-exercise equations to estimate cardiorespiratory fitness in multi-ethnic populations

    Providing NHS staff with height-adjustable workstations and behaviour change strategies to reduce workplace sitting time: protocol for the Stand More AT (SMArT) Work cluster randomised controlled trial

    Get PDF
    BACKGROUND. High levels of sedentary behaviour (i.e., sitting) are a risk factor for poor health. With high levels of sitting widespread in desk-based office workers, office workplaces are an appropriate setting for interventions aimed at reducing sedentary behaviour. This paper describes the development processes and proposed intervention procedures of Stand More AT (SMArT) Work, a multi-component randomised control (RCT) trial which aims to reduce occupational sitting time in desk-based office workers within the National Health Service (NHS). METHODS/DESIGN. SMArT Work consists of 2 phases: 1) intervention development: The development of the SMArT Work intervention takes a community-based participatory research approach using the Behaviour Change Wheel. Focus groups will collect detailed information to gain a better understanding of the most appropriate strategies, to sit alongside the provision of height-adjustable workstations, at the environmental, organisational and individual level that support less occupational sitting. 2) intervention delivery and evaluation: The 12 month cluster RCT aims to reduce workplace sitting in the University Hospitals of Leicester NHS Trust. Desk-based office workers (n = 238) will be randomised to control or intervention clusters, with the intervention group receiving height-adjustable workstations and supporting techniques based on the feedback received from the development phase. Data will be collected at four time points; baseline, 3, 6 and 12 months. The primary outcome is a reduction in sitting time, measured by the activPALTM micro at 12 months. Secondary outcomes include objectively measured physical activity and a variety of work-related health and psycho-social measures. A process evaluation will also take place. DISCUSSION. This study will be the first long-term, evidence-based, multi-component cluster RCT aimed at reducing occupational sitting within the NHS. This study will help form a better understanding and knowledge base of facilitators and barriers to creating a healthier work environment and contribute to health and wellbeing policy. TRIAL REGISTRATION. ISRCTN10967042. Registered 2 February 2015

    A cluster randomised controlled trial to investigate the effectiveness and cost effectiveness of the 'Girls Active' intervention: a study protocol

    Get PDF
    Background: Despite the health benefits of physical activity, data from the UK suggest that a large proportion of adolescents do not meet the recommended levels of moderate-to-vigorous physical activity (MVPA). This is particularly evident in girls, who are less active than boys across all ages and may display a faster rate of decline in physical activity throughout adolescence. The ‘Girls Active’ intervention has been designed by the Youth Sport Trust to target the lower participation rates observed in adolescent girls. ‘Girls Active’ uses peer leadership and marketing to empower girls to influence decision making in their school, develop as role models and promote physical activity to other girls. Schools are provided with training and resources to review their physical activity, sport and PE provision, culture and practices to ensure they are relevant and attractive to adolescent girls. Methods/Design: This study is a two-arm cluster randomised controlled trial (RCT) aiming to recruit 20 secondary schools. Clusters will be randomised at the school level (stratified by school size and proportion of Black and Minority Ethnic (BME) pupils) to receive either the ‘Girls Active’ intervention or carry on with usual practice (1:1). The 20 secondary schools will be recruited from state secondary schools within the Midlands area. We aim to recruit 80 girls aged 11 –14 years in each school. Data will be collected at three time points; baseline and seven and 14 months after baseline. Our primary aim is to investigate whether ‘Girls Active’ leads to higher objectively measured (GENEActiv) moderate-to-vigorous physical activity in adolescent girls at 14 months after baseline assessment compared to the control group. Secondary outcomes include other objectively measured physical activity variables, adiposity, physical activity-related psychological factors and the cost-effectiveness of the ‘Girls Active’ intervention. A thorough process evaluation will be conducted during the course of the intervention delivery. Discussion: The findings of this study will provide valuable information on whether this type of school-based approach to increasing physical activity in adolescent girls is both effective and cost-effective in the U
    • …
    corecore