33,007 research outputs found

    Matrix iterations and Cichon's diagram

    Full text link
    Using matrix iterations of ccc posets, we prove the consistency with ZFC of some cases where the cardinals on the right hand side of Cichon's diagram take two or three arbitrary values (two regular values, the third one with uncountable cofinality). Also, mixing this with the techniques in J Symb Log 56(3):795-810, 1991, we can prove that it is consistent with ZFC to assign, at the same time, several arbitrary regular values on the left hand side of Cichon's diagram.Comment: 14 pages, 2 figures, article in press for the journal Archive for Mathematical Logi

    Template iterations with non-definable ccc forcing notions

    Full text link
    We present a version with non-definable forcing notions of Shelah's theory of iterated forcing along a template. Our main result, as an application, is that, if κ\kappa is a measurable cardinal and θ<κ<μ<λ\theta<\kappa<\mu<\lambda are uncountable regular cardinals, then there is a ccc poset forcing s=θ<b=μ<a=λ\mathfrak{s}=\theta<\mathfrak{b}=\mu<\mathfrak{a}=\lambda. Another application is to get models with large continuum where the groupwise-density number g\mathfrak{g} assumes an arbitrary regular value.Comment: To appear in the Annals of Pure and Applied Logic, 45 pages, 2 figure
    • …
    corecore