6,232 research outputs found
Off-diagonal disorder in the Anderson model of localization
We examine the localization properties of the Anderson Hamiltonian with
additional off-diagonal disorder using the transfer-matrix method and
finite-size scaling. We compute the localization lengths and study the
metal-insulator transition (MIT) as a function of diagonal disorder, as well as
its energy dependence. Furthermore we investigate the different influence of
odd and even system sizes on the localization properties in quasi
one-dimensional systems. Applying the finite-size scaling approach in
conjunction with a nonlinear fitting procedure yields the critical parameters
of the MIT. In three dimensions, we find that the resulting critical exponent
of the localization length agrees with the exponent for the Anderson model with
pure diagonal disorder.Comment: 12 pages including 4 EPS figures, accepted for publication in phys.
stat. sol. (b
Orthogonal Sampling based Broad-Band Signal Generation with Low-Bandwidth Electronics
High-bandwidth signals are needed in many applications like radar, sensing,
measurement and communications. Especially in optical networks, the sampling
rate and analog bandwidth of digital-to-analog converters (DACs) is a
bottleneck for further increasing data rates. To circumvent the sampling rate
and bandwidth problem of electronic DACs, we demonstrate the generation of
wide-band signals with low-bandwidth electronics. This generation is based on
orthogonal sampling with sinc-pulse sequences in N parallel branches. The
method not only reduces the sampling rate and bandwidth, at the same time the
effective number of bits (ENOB) is improved, dramatically reducing the
requirements on the electronic signal processing. In proof of concept
experiments the generation of analog signals, as well as Nyquist shaped and
normal data will be shown. In simulations we investigate the performance of 60
GHz data generation by 20 and 12 GHz electronics. The method can easily be
integrated together with already existing electronic DAC designs and would be
of great interest for all high-bandwidth applications
Single chain Fab (scFab) fragment
BACKGROUND: The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. RESULTS: Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd) and the light chain (LC), resulting in the formation of a single chain Fab fragment (scFab), can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabΔC) connecting the constant part 1 of the heavy chain (CH1) and the constant part of the light chain (CL) were best suited for phage display and production of soluble antibody fragments. Beside the expression system E. coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies) as well as multimers were characterised. CONCLUSION: A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of common standard sera for detection
Microscopic modeling of photoluminescence of strongly disordered semiconductors
A microscopic theory for the luminescence of ordered semiconductors is
modified to describe photoluminescence of strongly disordered semiconductors.
The approach includes both diagonal disorder and the many-body Coulomb
interaction. As a case study, the light emission of a correlated plasma is
investigated numerically for a one-dimensional two-band tight-binding model.
The band structure of the underlying ordered system is assumed to correspond to
either a direct or an indirect semiconductor. In particular, luminescence and
absorption spectra are computed for various levels of disorder and sample
temperature to determine thermodynamic relations, the Stokes shift, and the
radiative lifetime distribution.Comment: 35 pages, 14 figure
Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy
The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated
Optically induced coherent intra-band dynamics in disordered semiconductors
On the basis of a tight-binding model for a strongly disordered semiconductor
with correlated conduction- and valence band disorder a new coherent dynamical
intra-band effect is analyzed. For systems that are excited by two, specially
designed ultrashort light-pulse sequences delayed by tau relatively to each
other echo-like phenomena are predicted to occur. In addition to the inter-band
photon echo which shows up at exactly t=2*tau relative to the first pulse, the
system responds with two spontaneous intra-band current pulses preceding and
following the appearance of the photon echo. The temporal splitting depends on
the electron-hole mass ratio. Calculating the population relaxation rate due to
Coulomb scattering, it is concluded that the predicted new dynamical effect
should be experimentally observable in an interacting and strongly disordered
system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring
The high-resolution structure of the rotor ring from alkaliphilic Bacillus pseudofirmus OF4 reveals a new type of ion binding in F1Fo-ATP synthases
Multibaryons with heavy flavors in the Skyrme model
We investigate the possible existence of multibaryons with heavy flavor
quantum numbers using the bound state approach to the topological soliton model
and the recently proposed approximation for multiskyrmion fields based on
rational maps. We use an effective interaction lagrangian which consistently
incorporates both chiral symmetry and the heavy quark symmetry including the
corrections up to order 1/m_Q. The model predicts some narrow heavy flavored
multibaryon states with baryon number four and seven.Comment: 8 pages, no figures, RevTe
Multibaryons as Symmetric Multiskyrmions
We study non-adiabatic corrections to multibaryon systems within the bound
state approach to the SU(3) Skyrme model. We use approximate ansatze for the
static background fields based on rational maps which have the same symmetries
of the exact solutions. To determine the explicit form of the collective
Hamiltonians and wave functions we only make use of these symmetries. Thus, the
expressions obtained are also valid in the exact case. On the other hand, the
inertia parameters and hyperfine splitting constants we calculate do depend on
the detailed form of the ansatze and are, therefore, approximate. Using these
values we compute the low lying spectra of multibaryons with B <= 9 and
strangeness 0, -1 and -B. Finally, we show that the non-adiabatic corrections
do not affect the stability of the tetralambda and heptalambda found in a
previous work.Comment: 17 pages, RevTeX, no figure
- …