557 research outputs found
Arresting rampant dental caries with silver diamine fluoride in a young teenager suffering from chronic oral graft versus host disease post-bone marrow transplantation: a case report
BACKGROUND: Rampant caries is an advanced and severe dental disease that affects multiple teeth. This case describes the management of rampant caries in a young teenager suffering from chronic oral graft versus host disease after allogeneic bone marrow transplantation. CASE PRESENTATION: A 14-year-old Chinese boy suffering from β–thalassemia major was referred to the dental clinic for the management of rampant dental caries. An oral examination revealed pale conjunctiva, bruising of lips, and depapillation of tongue indicating an underlying condition of anemia. The poor oral condition due to topical and systemic immunosuppressants was seriously aggravated, and rampant caries developed rapidly, affecting all newly erupted, permanent teeth. The teeth were hypersensitive and halitosis was apparent. Strategies for oral health education and diet modification were given to the patient. Xylitol chewing gum was used to stimulate saliva flow to promote remineralization of teeth. Silver diamine fluoride was topically applied to arrest rampant caries and to relieve pain from hypersensitivity. Carious teeth with pulpal involvement were endodontically treated. Stainless steel crowns were provided on molars to restore chewing function, and polycarbonate crowns were placed on premolars, upper canines and incisors. CONCLUSION: This case report demonstrates success in treating a young teenager with severe rampant dental decay by contemporary caries control and preventive strategy
Ontology-based Fuzzy Markup Language Agent for Student and Robot Co-Learning
An intelligent robot agent based on domain ontology, machine learning
mechanism, and Fuzzy Markup Language (FML) for students and robot co-learning
is presented in this paper. The machine-human co-learning model is established
to help various students learn the mathematical concepts based on their
learning ability and performance. Meanwhile, the robot acts as a teacher's
assistant to co-learn with children in the class. The FML-based knowledge base
and rule base are embedded in the robot so that the teachers can get feedback
from the robot on whether students make progress or not. Next, we inferred
students' learning performance based on learning content's difficulty and
students' ability, concentration level, as well as teamwork sprit in the class.
Experimental results show that learning with the robot is helpful for
disadvantaged and below-basic children. Moreover, the accuracy of the
intelligent FML-based agent for student learning is increased after machine
learning mechanism.Comment: This paper is submitted to IEEE WCCI 2018 Conference for revie
Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts
AbstractGlucose-6-phosphate dehydrogenase (G6PD) plays an important role in cellular redox homeostasis, which is crucial for cell survival. In the present study, we found that G6PD status determines the response of cells exposed to nitric oxide (NO) donor. Treatment with NO donor, sodium nitroprusside (SNP), caused apoptosis in G6PD-deficient human foreskin fibroblasts (HFF1), whereas it was growth stimulatory in the normal counterpart (HFF3). Such effects were abolished by NO scavengers like hemoglobin. Ectopic expression of G6PD in HFF1 cells switched the cellular response to NO from apoptosis to growth stimulation. Experiments with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and 8-bromo-cGMP showed that the effects of NO on HFF1 and HFF3 cells were independent of cGMP signalling pathway. Intriguingly, trolox prevented the SNP-induced apoptosis in HFF1 cells. These data demonstrate that G6PD plays a critical role in regulation of cell growth and survival
Lead Exposure Is Associated with Decreased Serum Paraoxonase 1 (PON1) Activity and Genotypes
Lead exposure causes cardiac and vascular damage in experimental animals. However, there is considerable debate regarding the causal relationship between lead exposure and cardiovascular dysfunction in humans. Paraoxonase 1 (PON1), a high-density lipoprotein-associated antioxidant enzyme, is capable of hydrolyzing oxidized lipids and thus protects against atherosclerosis. Previous studies have shown that lead and several other metal ions are able to inhibit PON1 activity in vitro. To investigate whether lead exposure has influence on serum PON1 activity, we conducted a cross-sectional study of workers from a lead battery manufactory and lead recycling plant. Blood samples were analyzed for whole-blood lead levels, serum PON1 activity, and three common PON1 polymorphisms (Q192R, L55M, −108C/T). The mean blood lead level (± SD) of this cohort was 27.1 ± 15 μg/dL. Multiple linear regression analysis showed that blood lead levels were significantly associated with decreased serum PON1 activity (p < 0.001) in lead workers. This negative correlation was more evident for workers who carry the R192 allele, which has been suggested to be a risk factor for coronary heart disease. Taken together, our results suggest that the decrease in serum PON1 activity due to lead exposure may render individuals more susceptible to atherosclerosis, particularly subjects who are homozygous for the R192 allele
Lessons Learned from PEARL CubeSats Operation
PEARL (Propagation Experiment using kurz-Above-band radio in Low earth orbit) CubeSats consists of two 6U XL CubeSats, named as PEARL-1C and PEARL-1H, integrated by National Central University (NCU) and Hon Hai Precision Industry Co., Ltd. (Foxconn) for educational training/scientific research was launched into a sun-synchronous orbit at 520 km altitude around 1030 local time sector by SpaceX Transporter-9 rideshare mission from Vandenburg Space Force Base on 11 November 2023. On PEARL-1C, two payloads are installed: a Ka-band communication payload (KCP) is developed by Rapidtek Technologies for broadband communication experiment and a Compact Ionospheric Probe (CIP) is an all-in-one in-situ ion sensor developed by NCU to measure global ionospheric ion concentration, velocity, and temperature. On PEARL-1H, a Communication PayLoad (CPL), which is developed by Tron Future to conduct broadband communication experiment with the beam-steering phase array antenna, is installed. Although both satellites are aimed at communication experiments, their system designs and configurations are still different. The CIP on PEARL-1C needs to face the forward direction to collect plasma. The attitude control is very important. There are two power distribution modules (PDM0 and two battery packs (BP) on PEARL-1H. Except for the battery raw power, all power sources providing the same voltage are shared and each BP is managed individually through each PDM. It is heavier and requires attention to mode changing. Therefore, the performances of on-orbit operation for these two CubeSat are also different and we need to make different operating instructions in response to different conditions. In this research, we will discuss the perfomances of PEARL CubeSats on the ground and on orbit, and presented with some experimental results
POINeT: protein interactome with sub-network analysis and hub prioritization
<p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools.</p> <p>Results</p> <p>We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles.</p> <p>Conclusion</p> <p>The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just a few clicks away. The modular design permits further functional enhancement without hampering the simplicity. POINeT is available at <url>http://poinet.bioinformatics.tw/</url>.</p
- …