4 research outputs found

    Linear free vibration analysis of tapered Timoshenko beams using coupled displacement field method

    Get PDF
    Every structure which is having some mass and elasticity is said to vibrate. Natural frequency is the one of the most important parameter associated with engineering vibration. In nature every structure has its own natural frequency. Whenever the natural frequency of the structure coincides with the frequency of external applied load, excessive deflections will occur and the structure will be failed. To avoid such condition one must be aware of the operating frequencies of the materials or structures under various conditions like simply supported, clamped and cantilever boundary conditions. There are many methods to evaluate the natural frequency of the structures. in this method the authors developed a method called “coupled displacement field method” which reduces computational efforts compared with the other methods and which is successfully applied for the Hinged-Hinged boundary condition of a tapered (rectangular cross section) Timoshenko beam and calculated the fundamental frequency parameter values and compared the results with existing literature. The results obtained in this method are very close to the existing literature

    Linear free vibration analysis of tapered Timoshenko beams using coupled displacement field method

    Get PDF
    Every structure which is having some mass and elasticity is said to vibrate. Natural frequency is the one of the most important parameter associated with engineering vibration. In nature every structure has its own natural frequency. Whenever the natural frequency of the structure coincides with the frequency of external applied load, excessive deflections will occur and the structure will be failed. To avoid such condition one must be aware of the operating frequencies of the materials or structures under various conditions like simply supported, clamped and cantilever boundary conditions. There are many methods to evaluate the natural frequency of the structures. in this method the authors developed a method called “coupled displacement field method” which reduces computational efforts compared with the other methods and which is successfully applied for the Hinged-Hinged boundary condition of a tapered (rectangular cross section) Timoshenko beam and calculated the fundamental frequency parameter values and compared the results with existing literature. The results obtained in this method are very close to the existing literature

    Free Vibrations of Uniform Timoshenko Beams on Pasternak Foundation Using Coupled Displacement Field Method

    No full text
    Complex structures used in various engineering applications are made up of simple structural members like beams, plates and shells. The fundamental frequency is absolutely essential in determining the response of these structural elements subjected to the dynamic loads. However, for short beams, one has to consider the effect of shear deformation and rotary inertia in order to evaluate their fundamental linear frequencies. In this paper, the authors developed a Coupled Displacement Field method where the number of undetermined coefficients 2n existing in the classical Rayleigh-Ritz method are reduced to n, which significantly simplifies the procedure to obtain the analytical solution. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. In this paper, the free vibration behaviour in terms of slenderness ratio and foundation parameters have been derived for the most practically used shear flexible uniform Timoshenko Hinged-Hinged, Clamped-Clamped beams resting on Pasternak foundation. The findings obtained by the present Coupled Displacement Field Method are compared with the existing literature wherever possible and the agreement is good
    corecore