44 research outputs found

    Hemiorchidectomy leads to dramatic and immediate alterations in pituitary follicle-stimulating hormone secretion and the functional activity of the remaining testis in the adult male bonnet monkey (Macaca radiata)

    Get PDF
    The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle

    Correlation of seasonal changes in sperm output with endocrinological changes in the adult male bonnet monkey, Macaca radiata

    Get PDF
    We have examined the monthly variations in sperm output and attempted to correlate the profiles of endocrine hormones secreted with the sperm counts throughout the year in the adult male bonnet monkey. As previously reported, there was a distinct spurt in sperm output beginning September through December months. A concomitant increase in serum testosterone and prolactin concentrations were also noted during September through November (mid and post-monsoon season). Although there was a marked increase in gonadotropin releasing hormone stimulated testosterone secretion, the peak testosterone concentrations post gonadotropin releasing hormone injection did not vary significantly (P > 0.05) throughout the year. Basal serum follicle stimulating hormone concentrations did not vary significantly (P > 0.05) during April to June months compared to September-November months. Serum inhibin concentration remained unaltered throughout the year, except in the month of March. The results of this study provide evidence for annual rhythms in prolactin and testosterone secretion and a distinct seasonality in the sperm output of the adult male bonnet monkey, but the pituitary responsiveness to exogenous gonadotropin releasing hormone remains unaltered throughout the year. Because of the existence of seasonality as noted in the present study, future studies which utilize the adult male bonnet monkey as an experimental model need to take into consideration the seasonal effects on reproductive function in this species

    Assessment of luteal rescue and desensitization of macaque corpus luteum brought about by human chorionic gonadotrophin and deglycosylated human chorionic gonadotrophin treatment

    Get PDF
    The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day '0' of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5,25 and 100 M) for 3h at 37°C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls. In addition thein vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15-90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6-15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6-9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCC added in vitro. The in vitro response of luteal cells to added hCG was inhibited by 0,50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6-9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP. The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12-15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain ofin vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development

    Dynamic changes in mitogen-activated protein kinase (MAPK) activities in the corpus luteum of the bonnet monkey (Macaca radiata) during development, induced luteolysis, and simulated early pregnancy: A role for p38 MAPK in the regulation of luteal function

    No full text
    Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates

    Standardization and validation of an induced ovulation model system in buffalo cows: Characterization of gene expression changes in the periovulatory follicle

    No full text
    In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF2α analogue (Tiaprost Trometamol, 750 μg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26 ± 0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF2α injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600 ± 16.7 and 38 ± 7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8 ± 25.26 ng/ml, but concentration of progesterone increased to 195 ± 24.6 ng/ml, 24 h post-hCG injection. Inh-α and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24 h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24 h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF2α and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge

    Characterization of cAMP/PKA/CREB signaling cascade in the bonnet monkey corpus luteum: expressions of inhibin-\alpha and StAR during different functional status

    No full text
    Luteinizing hormone mediates its nuclear action primarily by activating cAMP/Protein kinase A (PKA) pathway leading to phosphorylation of cAMP response element binding (CREB) family of transcription factors. Earlier studies have documented altered cAMP responsiveness of luteal cells during maturation, and in the rhesus monkey, extinction of CREB expression following luteinization and ovulation. In the course of studies aimed at characterizing LH-cAMP signaling pathway, we serendipitously discovered that CREB is after all present in the monkey corpus luteum (CL). The present experiments were carried out to examine the PKA activity, CREB expression and RT–PCR expression of inhibin-a (Inh-a) subunit and steroidogenic acute regulatory protein (StAR) in CL obtained from a variety of model systems. PKA activity in the CL was maintained throughout the luteal phase. Messenger RNA expression by RT–PCR and Northern analyses and protein levels employing antibodies specific to total- and phosphoforms demonstrated presence of CREB in the CL. Additionally, immuno-histo/cytochemical analyses, Electrophoretic mobility shift assays and chromatin immunoprecipitation assays for Inh-a and StAR genes further confirmed the presence of CREB in the CL. The present study, contrary to an earlier report, demonstrates the presence of CREB (both transcript and protein) in the monkey CL. Also, analysis of expression of Inh-\alpha and StAR genes (considered to be cAMP responsive), during different functional status of CL suggests that LH regulates their expression perhaps by cAMP/PKA/CREB pathway

    Developmental Regulation of Mitogen-Activated Protein (MAP Kinases in Corpus Luteum: Changes during Luteolysis and Simulated Early Pregnancy in the Bonnet Monkey

    No full text
    The process of luteinization, during which granulosa cells are transformed into luteal cells, is accompanied by dramatic changes in the response of luteal cells to LH. In primates, luteinization is accompanied by the loss of CREB expression and therefore, loss of a critical survival signaling cascade. Since MAP kinases are recognized to regulate cellular responses both through the phosphorylation of transcription factors, and through the phosphorylation of downstream target protein kinases, we investigated developmental regulation of MAP kinase activities and their role during luteolysis and rescue of the primate corpus luteum (CL). Corpora lutea (n=3) during different stages of the luteal phase (early, mid and late) were subjected to western blot analysis using antibodies specific to phospho- or total- form of the MAP kinases (ERK/p38/JNK). All three MAP kinase activities appeared to be maximal during the mid-luteal phase of the CL (50-100% higher compared to early and late phase), coincident with the maximal steroidogenesis (based on high StAR protein and serum P4 levels), indicating that MAP kinases possibly regulate survival and/or death of CL. Moreover, we investigated the role played by the MAP kinases during different functional status of the CL by employing two approaches. First, luteolysis was induced during the mid-luteal phase by an GnRH antagonist (Cetrorelix; 150mg/kg/day) and CL (n=4/time point) collected at 0, 12, 24 and 48 h of treatment. There was a precipitous fall in steroidogenesis (P4-2.13± 0.6 vs. 0.43±0.0 ng/ml at 0 and 48h; p<0.05). Western blot analysis of the CL lysates for MAP kinases revealed a significant (p<0.05) decrease in the pp38 and pERK1/2 levels (~70% decrease over control) 24-48 h after treatment, but not in the pJNK-1/2 and total MAP kinase levels. Suppression of the p38 and ERK levels during luteolysis suggest that these are required for the survival of the primate CL. Second, to address the role of p38 and ERK in the rescue of CL, we simulated early pregnancy by exogenous administration of hCG during days 5-9, 9-14 and 5-14 of the luteal phase. Analysis of tissues for MAP kinases revealed that pp38 levels were higher (~1.5 fold) only when the treatment was initiated on Day 9. Taken together, these findings suggest a possible involvement of MAP kinases during CL development, and a role for p38 in the survival of the CL in the primate
    corecore