1,684 research outputs found

    Direct solar energy conversion for large scale terrestrial use

    Get PDF
    Various techniques to increase the open circuit voltage are being explored. It had been previously observed that cells made on CdS deposited from a single source gave a consistently higher V sub oc. Further tests have now shown that this effect may in fact relate to differences in source and substrate temperatures. The resulting differences in CdS structure and crystallinity are being documented. Deposits of mixed CdS and ZnS are being produced and will be initially made into cells using the conventional barriering technique. Analysis of I-V characteristics at temperatures between 25 and 110 C is being perfected to provide nondestructive analysis of the Cu2S. Changes due to vacuum heat treatments and exposure to oxygen are also being monitored by the same technique. Detailed spectral response measurements are being made

    Is it really possible to grow isotropic on-lattice diffusion-limited aggregates?

    Full text link
    In a recent paper (Bogoyavlenskiy V A 2002 \JPA \textbf{35} 2533), an algorithm aiming to generate isotropic clusters of the on-lattice diffusion-limited aggregation (DLA) model was proposed. The procedure consists of aggregation probabilities proportional to the squared number of occupied sites (k2k^2). In the present work, we analyzed this algorithm using the noise reduced version of the DLA model and large scale simulations. In the noiseless limit, instead of isotropic patterns, a 45∘45^\circ (30∘30^\circ) rotation in the anisotropy directions of the clusters grown on square (triangular) lattices was observed. A generalized algorithm, in which the aggregation probability is proportional to kνk^\nu, was proposed. The exponent ν\nu has a nonuniversal critical value νc\nu_c, for which the patterns generated in the noiseless limit exhibit the original (axial) anisotropy for ν<νc\nu<\nu_c and the rotated one (diagonal) for ν>νc\nu>\nu_c. The values νc=1.395¹0.005\nu_c = 1.395\pm0.005 and νc=0.82¹0.01\nu_c = 0.82\pm 0.01 were found for square and triangular lattices, respectively. Moreover, large scale simulations show that there are a nontrivial relation between noise reduction and anisotropy direction. The case ν=2\nu=2 (\bogo's rule) is an example where the patterns exhibit the axial anisotropy for small and the diagonal one for large noise reduction.Comment: 12 pages, 8 figure

    Conformal approach to cylindrical DLA

    Full text link
    We extend the conformal mapping approach elaborated for the radial Diffusion Limited Aggregation model (DLA) to the cylindrical geometry. We introduce in particular a complex function which allows to grow a cylindrical cluster using as intermediate step a radial aggregate. The grown aggregate exhibits the same self-affine features of the original cylindrical DLA. The specific choice of the transformation allows us to study the relationship between the radial and the cylindrical geometry. In particular the cylindrical aggregate can be seen as a radial aggregate with particles of size increasing with the radius. On the other hand the radial aggregate can be seen as a cylindrical aggregate with particles of size decreasing with the height. This framework, which shifts the point of view from the geometry to the size of the particles, can open the way to more quantitative studies on the relationship between radial and cylindrical DLA.Comment: 16 pages, 8 figure

    Diffusion-limited deposition with dipolar interactions: fractal dimension and multifractal structure

    Full text link
    Computer simulations are used to generate two-dimensional diffusion-limited deposits of dipoles. The structure of these deposits is analyzed by measuring some global quantities: the density of the deposit and the lateral correlation function at a given height, the mean height of the upper surface for a given number of deposited particles and the interfacial width at a given height. Evidences are given that the fractal dimension of the deposits remains constant as the deposition proceeds, independently of the dipolar strength. These same deposits are used to obtain the growth probability measure through Monte Carlo techniques. It is found that the distribution of growth probabilities obeys multifractal scaling, i.e. it can be analyzed in terms of its f(Îą)f(\alpha) multifractal spectrum. For low dipolar strengths, the f(Îą)f(\alpha) spectrum is similar to that of diffusion-limited aggregation. Our results suggest that for increasing dipolar strength both the minimal local growth exponent Îąmin\alpha_{min} and the information dimension D1D_1 decrease, while the fractal dimension remains the same.Comment: 10 pages, 7 figure

    Active Carbon and Oxygen Shell Burning Hydrodynamics

    Full text link
    We have simulated 2.5×103\times10^3 s of the late evolution of a 23M⊙23 \rm M_\odot star with full hydrodynamic behavior. We present the first simulations of a multiple-shell burning epoch, including the concurrent evolution and interaction of an oxygen and carbon burning shell. In addition, we have evolved a 3D model of the oxygen burning shell to sufficiently long times (300 s) to begin to assess the adequacy of the 2D approximation. We summarize striking new results: (1) strong interactions occur between active carbon and oxygen burning shells, (2) hydrodynamic wave motions in nonconvective regions, generated at the convective-radiative boundaries, are energetically important in both 2D and 3D with important consequences for compositional mixing, and (3) a spectrum of mixed p- and g-modes are unambiguously identified with corresponding adiabatic waves in these computational domains. We find that 2D convective motions are exaggerated relative to 3D because of vortex instability in 3D. We discuss the implications for supernova progenitor evolution and symmetry breaking in core collapse.Comment: 5 pages, 4 figures in emulateapj format. Accepted for publication in ApJ Letters. High resolution figure version available at http://spinach.as.arizona.ed

    Exact solution for the stationary Kardar-Parisi-Zhang equation

    Full text link
    We obtain the first exact solution for the stationary one-dimensional Kardar-Parisi-Zhang equation. A formula for the distribution of the height is given in terms of a Fredholm determinant, which is valid for any finite time tt. The expression is explicit and compact enough so that it can be evaluated numerically. Furthermore, by extending the same scheme, we find an exact formula for the stationary two-point correlation function.Comment: 9 pages, 3 figure

    Diffusion-limited deposition of dipolar particles

    Full text link
    Deposits of dipolar particles are investigated by means of extensive Monte Carlo simulations. We found that the effect of the interactions is described by an initial, non-universal, scaling regime characterized by orientationally ordered deposits. In the dipolar regime, the order and geometry of the clusters depend on the strength of the interactions and the magnetic properties are tunable by controlling the growth conditions. At later stages, the growth is dominated by thermal effects and the diffusion-limited universal regime obtains, at finite temperatures. At low temperatures the crossover size increases exponentially as T decreases and at T=0 only the dipolar regime is observed.Comment: 5 pages, 4 figure
    • …
    corecore