6,075 research outputs found
X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus
A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A
cluster has revealed an extensive cavity system. The system was created by a
continuous outflow or a series of bursts from the nucleus of the central galaxy
over the past 200-500 Myr. The cavities have displaced 10% of the plasma within
a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology
in the hot gas. The surface brightness decrements are consistent with empty
cavities oriented within 40 degrees of the plane of the sky. The outflow has
deposited upward of 10^61 erg into the cluster gas, most of which was propelled
beyond the inner ~100 kpc cooling region. The supermassive black hole has
accreted at a rate of approximately 0.1-0.25 solar masses per year over this
time frame, which is a small fraction of the Eddington rate of a ~10^9 solar
mass black hole, but is dramatically larger than the Bondi rate. Given the
previous evidence for a circumnuclear disk of cold gas in Hydra A, these
results are consistent with the AGN being powered primarily by infalling cold
gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such
low frequency synchrotron emission may be an excellent proxy for X-ray cavities
and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's
suggestion
The Detectability of AGN Cavities in Cooling-Flow Clusters
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling
flow clusters. The cavities trace feedback from the central active galactic
nulceus (AGN) on the intracluster medium (ICM), an important ingredient in
stabilizing cooling flows and in the process of galaxy formation and evolution.
But, the prevalence and duty cycle of such AGN outbursts is not well
understood. To this end, we study how the cooling is balanced by the cavity
heating for a complete sample of clusters (the Brightest 55 clusters of
galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of
which have detected X-ray bubbles in their ICM. Among the remaining 13, all
except Ophiuchus could have significant cavity power yet remain undetected in
existing images. This implies that the duty cycle of AGN outbursts with
significant heating potential in cooling flow clusters is at least 60 % and
could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters'
Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric
Wilcots; added annotation to the figur
A Large Atom Number Metastable Helium Bose-Einstein Condensate
We have produced a Bose-Einstein condensate of metastable helium (4He*)
containing over 1.5x10^7 atoms, which is a factor of 25 higher than previously
achieved. The improved starting conditions for evaporative cooling are obtained
by applying one-dimensional Doppler cooling inside a magnetic trap. The same
technique is successfully used to cool the spin-polarized fermionic isotope
(3He*), for which thermalizing collisions are highly suppressed. Our detection
techniques include absorption imaging, time-of-flight measurements on a
microchannel plate detector and ion counting to monitor the formation and decay
of the condensate.Comment: 4 pages, 3 figures (changed content
The powerful outburst in Hercules A
The radio source Hercules A resides at the center of a cooling flow cluster
of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front
in the intracluster medium (ICM) surrounding the radio source, about 160 kpc
from the active galactic nucleus (AGN) that hosts it. The shock has a Mach
number of 1.65, making it the strongest of the cluster-scale shocks driven by
an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy
about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN
outbursts in cooling flow clusters, this outburst overwhelms radiative losses
from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case
that AGN outbursts are a significant source of preheating for the ICM. Unless
the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central
black hole must have grown by more than 1.7e8 Msun to power this one outburst.Comment: 4 pages, 5 figures, accepted by ApJ
Jet Interactions with the Hot Halos of Clusters and Galaxies
X-ray observations of cavities and shock fronts produced by jets streaming
through hot halos have significantly advanced our understanding of the
energetics and dynamics of extragalactic radio sources. Radio sources at the
centers of clusters have dynamical ages between ten and several hundred million
years. They liberate between 1E58-1E62 erg per outburst, which is enough energy
to regulate cooling of hot halos from galaxies to the richest clusters. Jet
power scales approximately with the radio synchrotron luminosity to the one
half power. However, the synchrotron efficiency varies widely from nearly unity
to one part in 10,000, such that relatively feeble radio source can have
quasar-like mechanical power. The synchrotron ages of cluster radio sources are
decoupled from their dynamical ages, which tend to be factors of several to
orders of magnitude older. Magnetic fields and particles in the lobes tend to
be out of equipartition. The lobes may be maintained by heavy particles (e.g.,
protons), low energy electrons, a hot, diffuse thermal gas, or possibly
magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and
cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and
Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24
May, 2007, minor text changes; one added referenc
A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62
We report on an analysis of new Chandra data of the galaxy group HCG 62, well
known for possessing cavities in its intragroup medium (IGM) that were inflated
by the radio lobes of its central active galactic nucleus (AGN). With the new
data, a factor of three deeper than previous Chandra data, we re-examine the
energetics of the cavities and determine new constraints on their contents. We
confirm that the ratio of radiative to mechanical power of the AGN outburst
that created the cavities is less than 10^-4, among the lowest of any known
cavity system, implying that the relativistic electrons in the lobes can supply
only a tiny fraction of the pressure required to support the cavities. This
finding implies additional pressure support in the lobes from heavy particles
(e.g., protons) or thermal gas. Using spectral fits to emission in the
cavities, we constrain any such volume-filling thermal gas to have a
temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the
central AGN, with a luminosity of L(2-10 keV) = (1.1 +/- 0.4) x 10^39 erg s^-1
and properties typical of a low-luminosity AGN. Lastly, we report evidence for
a recent merger from the surface brightness, temperature, and metallicity
structure of the IGM.Comment: Accepted to MNRAS, 14 pages, 9 figure
- …