121 research outputs found

    Towards Automatic Generation of Short Summaries of Commits

    Full text link
    Committing to a version control system means submitting a software change to the system. Each commit can have a message to describe the submission. Several approaches have been proposed to automatically generate the content of such messages. However, the quality of the automatically generated messages falls far short of what humans write. In studying the differences between auto-generated and human-written messages, we found that 82% of the human-written messages have only one sentence, while the automatically generated messages often have multiple lines. Furthermore, we found that the commit messages often begin with a verb followed by an direct object. This finding inspired us to use a "verb+object" format in this paper to generate short commit summaries. We split the approach into two parts: verb generation and object generation. As our first try, we trained a classifier to classify a diff to a verb. We are seeking feedback from the community before we continue to work on generating direct objects for the commits.Comment: 4 pages, accepted in ICPC 2017 ERA Trac

    A Neural Model for Generating Natural Language Summaries of Program Subroutines

    Full text link
    Source code summarization -- creating natural language descriptions of source code behavior -- is a rapidly-growing research topic with applications to automatic documentation generation, program comprehension, and software maintenance. Traditional techniques relied on heuristics and templates built manually by human experts. Recently, data-driven approaches based on neural machine translation have largely overtaken template-based systems. But nearly all of these techniques rely almost entirely on programs having good internal documentation; without clear identifier names, the models fail to create good summaries. In this paper, we present a neural model that combines words from code with code structure from an AST. Unlike previous approaches, our model processes each data source as a separate input, which allows the model to learn code structure independent of the text in code. This process helps our approach provide coherent summaries in many cases even when zero internal documentation is provided. We evaluate our technique with a dataset we created from 2.1m Java methods. We find improvement over two baseline techniques from SE literature and one from NLP literature

    Searching, Selecting, and Synthesizing Source Code Components

    Get PDF
    As programmers develop software, they instinctively sense that source code exists that could be reused if found --- many programming tasks are common to many software projects across different domains. oftentimes, a programmer will attempt to create new software from this existing source code, such as third-party libraries or code from online repositories. Unfortunately, several major challenges make it difficult to locate the relevant source code and to reuse it. First, there is a fundamental mismatch between the high-level intent reflected in the descriptions of source code, and the low-level implementation details. This mismatch is known as the concept assignment problem , and refers to the frequent case when the keywords from comments or identifiers in code do not match the features implemented in the code. Second, even if relevant source code is found, programmers must invest significant intellectual effort into understanding how to reuse the different functions, classes, or other components present in the source code. These components may be specific to a particular application, and difficult to reuse.;One key source of information that programmers use to understand source code is the set of relationships among the source code components. These relationships are typically structural data, such as function calls or class instantiations. This structural data has been repeatedly suggested as an alternative to textual analysis for search and reuse, however as yet no comprehensive strategy exists for locating relevant and reusable source code. In my research program, I harness this structural data in a unified approach to creating and evolving software from existing components. For locating relevant source code, I present a search engine for finding applications based on the underlying Application Programming Interface (API) calls, and a technique for finding chains of relevant function invocations from repositories of millions of lines of code. Next, for reusing source code, I introduce a system to facilitate building software prototypes from existing packages, and an approach to detecting similar software applications

    Detecting Important Terms in Source Code for Program Comprehension

    Get PDF
    Software Engineering research has become extremely dependent on terms (words in textual data) extracted from source code. Different techniques have been proposed to extract the most important\u27\u27 terms from code. These terms are typically used as input to research prototypes: the quality of the output of these prototypes will depend on the quality of the term extraction technique. At present no consensus exists about which technique predicts the best terms for code comprehension. We perform a literature review, and propose a unified prediction model based on a Naive Bayes algorithm. We evaluate our model in a field study with professional programmers, as well as a standard 10-fold synthetic study. We found our model predicts the top quartile of the most-important terms with approximately 50% precision and recall, outperforming other popular techniques. We found the predictions from our model to help programmers to the same degree as the gold set

    Distilled GPT for Source Code Summarization

    Full text link
    A code summary is a brief natural language description of source code. Summaries are usually only a single sentence long, and yet form the backbone of developer documentation. A short descriptions such as "changes all visible polygons to the color blue" can give a programmer a high-level idea of what code does without the effort of reading the code itself. Recently, products based on Large Language Models such as ChatGPT have demonstrated a strong ability to write these descriptions automatically. However, to use these tools, programmers must send their code to untrusted third parties for processing (e.g., via an API call). This loss of custody is not acceptable to many organizations. In this paper, we present an alternative: we train an open source model using sample output generated by GPT-3.5 in a process related to knowledge distillation. Our model is small enough (350m parameters) to be run on a single 16gb GPU, yet we show in our evaluation that it is large enough to mimic GPT-3.5 on this task.Comment: 19 pages + 6 figures. Accepted to Automated Software Engineering Journa

    Semantic Similarity Loss for Neural Source Code Summarization

    Full text link
    This paper presents an improved loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models e.g., GPT, Codex, LLaMA. Yet almost all also use a categorical cross-entropy (CCE) loss function for network optimization. Two problems with CCE are that 1) it computes loss over each word prediction one-at-a-time, rather than evaluating a whole sentence, and 2) it requires a perfect prediction, leaving no room for partial credit for synonyms. We propose and evaluate a loss function to alleviate this problem. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with traditional CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report an improvement in the vast majority of conditions.Comment: 20 pages + 8 figures + 5 references. Preprint In Review Aug. 202

    Automatically Extracting Subroutine Summary Descriptions from Unstructured Comments

    Full text link
    Summary descriptions of subroutines are short (usually one-sentence) natural language explanations of a subroutine's behavior and purpose in a program. These summaries are ubiquitous in documentation, and many tools such as JavaDocs and Doxygen generate documentation built around them. And yet, extracting summaries from unstructured source code repositories remains a difficult research problem -- it is very difficult to generate clean structured documentation unless the summaries are annotated by programmers. This becomes a problem in large repositories of legacy code, since it is cost prohibitive to retroactively annotate summaries in dozens or hundreds of old programs. Likewise, it is a problem for creators of automatic documentation generation algorithms, since these algorithms usually must learn from large annotated datasets, which do not exist for many programming languages. In this paper, we present a semi-automated approach via crowdsourcing and a fully-automated approach for annotating summaries from unstructured code comments. We present experiments validating the approaches, and provide recommendations and cost estimates for automatically annotating large repositories.Comment: 10 pages, plus references. Accepted for publication in the 27th IEEE International Conference on. Software Analysis, Evolution and Reengineering London, Ontario, Canada, February 18-21, 202
    corecore