151 research outputs found
Manage at Work: A Randomized, Controlled Trial of a Self-Management Group Intervention to Overcome Workplace Challenges Associated with Chronic Physical Health Conditions
Background: The percentage of older and chronically ill workers is increasing rapidly in the US and in many other countries, but few interventions are available to help employees overcome the workplace challenges of chronic pain and other physical health conditions. While most workers are eligible for job accommodation and disability compensation benefits, other workplace strategies might improve individual-level coping and problem solving to prevent work disability. In this study, we hypothesize that an employer-sponsored group intervention program employing self-management principles may improve worker engagement and reduce functional limitation associated with chronic disorders.
Methods: In a randomized controlled trial (RCT), workers participating in an employer-sponsored self-management group intervention will be compared with a no-treatment (wait list) control condition. Volunteer employees (n = 300) will be recruited from five participating employers and randomly assigned to intervention or control. Participants in the intervention arm will attend facilitated group workshop sessions at work (10 hours total) to explore methods for improving comfort, adjusting work habits, communicating needs effectively, applying systematic problem solving, and dealing with negative thoughts and emotions about work. Work engagement and work limitation are the principal outcomes. Secondary outcomes include fatigue, job satisfaction, self-efficacy, turnover intention, sickness absence, and health care utilization. Measurements will be taken at baseline, 6-, and 12-month follow-up. A process evaluation will be performed alongside the randomized trial.
Discussion: This study will be most relevant for organizations and occupational settings where some degree of job flexibility, leeway, and decision-making autonomy can be afforded to affected workers. The study design will provide initial assessment of a novel workplace approach and to understand factors affecting its feasibility and effectiveness
GAPDH mediates drug resistance and metabolism in Plasmodium falciparum malaria parasites
Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity
Magnetic Exciton-Polariton with Strongly Coupled Atomic and Photonic Anisotropies
Anisotropy plays a key role in science and engineering. However, the
interplay between the material and engineered photonic anisotropies has hardly
been explored due to the vastly different length scales. Here we demonstrate a
matter-light hybrid system, exciton-polaritons in a 2D antiferromagnet, CrSBr,
coupled with an anisotropic photonic crystal (PC) cavity, where the spin,
atomic lattice, and photonic lattices anisotropies are strongly correlated,
giving rise to unusual properties of the hybrid system and new possibilities of
tuning. We show exceptionally strong coupling between engineered anisotropic
optical modes and anisotropic excitons in CrSBr, which is stable against
excitation densities a few orders of magnitude higher than polaritons in
isotropic materials. Moreover, the polaritons feature a highly anisotropic
polarization tunable by tens of degrees by controlling the matter-light
coupling via, for instance, spatial alignment between the material and photonic
lattices, magnetic field, temperature, cavity detuning and cavity
quality-factors. The demonstrated system provides a prototype where atomic- and
photonic-scale orders strongly couple, opening opportunities of photonic
engineering of quantum materials and novel photonic devices, such as compact,
on-chip polarized light source and polariton laser
A regioselective three component reaction of pyridine N-oxides, acyl chlorides and cyclic ethers
A novel 3-component reaction of pyridine N-oxides, acyl chlorides and cyclic ethers is described. Treatment of an electron defi-cient pyridine N-oxide with an acyl chloride in the presence of a cyclic ether at 25–50 °C leads to a substituted pyridine as a single regioisomer in up to 58% isolated yield. Isotopic labelling experiments and substrate scope support the reaction proceeding through a carbene intermediate
Discussions and Reviews : Theorizing about theory in international politics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66906/2/10.1177_002200276000400405.pd
BreakTrans: Uncovering the genomic architecture of gene fusions
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTran
Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy
Intracellular uptake, distribution and metabolism of lipids is a tightly regulated characteristic in healthy cells. An analytical technique capable of understanding these characteristics with a high level of species specificity in a minimally invasive manner is highly desirable in order to understand better how these become disrupted during disease. In this study, the uptake and distribution of three different alkyne tagged fatty acids in single cells was monitored and compared, highlighting the ability of Raman spectroscopy combined with alkyne tags for better understanding of the fine details with regards to uptake, distribution and metabolism of very chemically specific lipid species. This indicates the promise of using Raman spectroscopy directly with alkyne tagged lipids for cellular studies as opposed to subsequently clicking of a fluorophore onto the alkyne for fluorescence imaging
Regioselective reaction of heterocyclic N-oxides, an acyl chloride and cyclic thioethers
Treatment of electron deficient pyridine N-oxides with 4-nitrobenzoyl chloride and a cyclic thioether in the presence of triethylamine leads to the corresponding 2-functionalized product in up to 74% iso-lated yield. The transformation can also be accomplished with alternative nitrogen containing hetero-cycles including quinolines, pyrimidines, and pyrazines. To expand the scope of the transformation diisopropyl ether can be used as the reaction medium to allow for the use of solid thioether substrates
Development of Resorbable Phosphate-Based Glass Microspheres as MRI Contrast Media Agents
In this research, resorbable phosphate-based glass (PBG) compositions were developed using varying modifier oxides including iron (Fe2O3), copper (CuO), and manganese (MnO2), and then processed via a rapid single-stage flame spheroidisation process to manufacture dense (i.e., solid) and highly porous microspheres. Solid (63–200 µm) and porous (100–200 µm) microspheres were produced and characterised via SEM, XRD, and EDX to investigate their surface topography, structural properties, and elemental distribution. Complementary NMR investigations revealed the formation of Q2, Q1, and Q0 phosphate species within the porous and solid microspheres, and degradation studies performed to evaluate mass loss, particle size, and pH changes over 28 days showed no significant differences among the microspheres (63–71 µm) investigated. The microspheres produced were then investigated using clinical (1.5 T) and preclinical (7 T) MRI systems to determine the R1 and R2 relaxation rates. Among the compositions investigated, manganese-based porous and solid microspheres revealed enhanced levels of R2 (9.7–10.5 s−1 for 1.5 T; 17.1–18.9 s−1 for 7 T) and R1 (3.4–3.9 s−1 for 1.5 T; 2.2–2.3 s−1 for 7 T) when compared to the copper and iron-based microsphere samples. This was suggested to be due to paramagnetic ions present in the Mn-based microspheres. It is also suggested that the porosity in the resorbable PBG porous microspheres could be further explored for loading with drugs or other biologics. This would further advance these materials as MRI theranostic agents and generate new opportunities for MRI contrast-enhancement oral-delivery applications
- …