3 research outputs found

    High prevalences and a wide genetic diversity of simian retroviruses in non-human primate bushmeat in rural areas of the Democratic Republic of Congo [+ Erratum]

    No full text
    Like the majority of emerging infectious diseases, HIV and HTLV are of zoonotic origin. Here we assess the risk of cross-species transmissions of their simian counterparts, SIV and STLV, from non-human primates (NHP) to humans in the Democratic Republic of Congo (DRC). A total of 331 samples, derived from NHP bushmeat, were collected as dried blood spots (DBS, n = 283) or as tissue samples (n = 36) at remote forest sites mainly in northern and eastern DRC. SIV antibody prevalences in DBS were estimated with a novel high throughput immunoassay with antigens representing the actual known diversity of HIV/SIV lineages. Antibody-positive samples were confirmed by PCR and sequence analysis. Screening for STLV infection was done with universal primers in tax, and new strains were further characterized in LTR. SIV and STLV infection in tissue samples was done by PCR only. Overall, 5 and 15.4% of NHP bushmeat was infected with SIV and STLV, respectively. A new SIV lineage was identified in Allen's swamp monkeys (Allenopithecus nigroviridis). Three new STLV-1 subtypes were identified in Allen's swamp monkeys (Allenopithecus nigroviridis), blue monkeys (Cercopithecus mitis), red-tailed guenons (Cercopithecus ascanius schmidti) and agile mangabeys (Cercocebus agilis). SIV and STLV prevalences varied according to species and geographic region. Our study illustrates clearly, even on a small sample size from a limited number of geographic areas, that our knowledge on the genetic diversity and geographic distribution of simian retroviruses is still limited and that humans continue to be exposed to relative high proportions on infected NHP bushmeat

    Identification and molecular characterization of new simian T cell lymphotropic viruses in nonhuman primates bushmeat from the Democratic Republic of Congo

    No full text
    Four types of human T cell lymphotropic viruses (HTLV) have been described (HTLV-1 to HTLV-4) with three of them having closely related simian virus analogues named STLV-1, -2, and -3. To assess the risk of cross-species transmissions of STLVs from nonhuman primates to humans in the Democratic Republic of Congo, a total of 330 samples, derived from primate bushmeat, were collected at remote forest sites where people rely on bushmeat for subsistence. STLV prevalences and genetic diversity were estimated by PCR and sequence analysis of tax-rex and LTR fragments. Overall, 7.9% of nonhuman primate bushmeat is infected with STLVs. We documented new STLV-1 and STLV-3 variants in six out of the seven species tested and showed for the first time STLV infection in C. mona wolfi, C. ascanius whitesidei, L. aterrimus aterrimus, C. angolensis, and P. tholloni. Our results provide increasing evidence that the diversity and geographic distribution of PTLVs are much greater than previously thought

    Genetic diversity of STLV-2 and interspecies transmission of STLV-3 in wild-living bonobos

    No full text
    There are currently four known primate T-cell lymphotropic virus groups (PTLV1-4), each of which comprises closely related simian (STLV) and human (HTLV) viruses. For PTLV-1 and PTLV-3, simian and human viruses are interspersed, suggesting multiple cross-species transmission events; however, for PTLV-2 this is not so clear because HTLV-2 and STLV-2 strains from captive bonobos (Pan paniscus) form two distinct clades. To determine to what extent bonobos are naturally infected with STLV, we screened fecal samples (n = 633) from wild-living bonobos (n = 312) at six different sites in the Democratic Republic of Congo (DRC) for the presence of STLV nucleic acids. STLV infection was detected in 8 of 312 bonobos at four of six field sites, suggesting an overall prevalence of 2.6% (ranging from 0 to 8%). Six samples contained STLV-2, while the two others contained STLV-3, as determined by phylogenetic analysis of partial tax and Long Terminal Repeats (LTR) sequences. The new STLV-2 sequences were highly diverse, but grouped with previously identified STLV-2 strains as a sister clade to HTLV-2. In contrast, the new STLV-3 sequences did not cluster together, but were more closely related to STLVs from sympatric monkey species. These results show for the first time that fecal samples can be used to detect STLV infection in apes. These results also show that wild-living bonobos are endemically infected with STLV-2, but have acquired STLV-3 on at least two occasions most likely by cross-species transmission from monkey species on which they prey. Future studies of bonobos and other non-human primate species in Central Africa are needed to identify the simian precursor of HTLV-2 in humans
    corecore