1,690 research outputs found
Unconditional security of coherent-state quantum key distribution with strong phase-reference pulse
We prove the unconditional security of a quantum key distribution protocol in
which bit values are encoded in the phase of a weak coherent-state pulse
relative to a strong reference pulse. In contrast to implementations in which a
weak pulse is used as a substitute for a single-photon source, the achievable
key rate is found to decrease only linearly with the transmission of the
channel.Comment: 4 pages, 3 figure
Unconditional security at a low cost
By simulating four quantum key distribution (QKD) experiments and analyzing
one decoy-state QKD experiment, we compare two data post-processing schemes
based on security against individual attack by L\"{u}tkenhaus, and
unconditional security analysis by Gottesman-Lo-L\"{u}tkenhaus-Preskill. Our
results show that these two schemes yield close performances. Since the Holy
Grail of QKD is its unconditional security, we conclude that one is better off
considering unconditional security, rather than restricting to individual
attacks.Comment: Accepted by International Conference on Quantum Foundation and
Technology: Frontier and Future 2006 (ICQFT'06
Device-independent bounds for Hardy's experiment
In this Letter we compute an analogue of Tsirelson's bound for Hardy's test
of nonlocality, that is, the maximum violation of locality constraints allowed
by the quantum formalism, irrespective of the dimension of the system. The
value is found to be the same as the one achievable already with two-qubit
systems, and we show that only a very specific class of states can lead to such
maximal value, thus highlighting Hardy's test as a device-independent self-test
protocol for such states. By considering realistic constraints in Hardy's test,
we also compute device-independent upper bounds on this violation and show that
these bounds are saturated by two-qubit systems, thus showing that there is no
advantage in using higher-dimensional systems in experimental implementations
of such test.Comment: 4 pages, 2 figure
Generalized self-testing and the security of the 6-state protocol
Self-tested quantum information processing provides a means for doing useful
information processing with untrusted quantum apparatus. Previous work was
limited to performing computations and protocols in real Hilbert spaces, which
is not a serious obstacle if one is only interested in final measurement
statistics being correct (for example, getting the correct factors of a large
number after running Shor's factoring algorithm). This limitation was shown by
McKague et al. to be fundamental, since there is no way to experimentally
distinguish any quantum experiment from a special simulation using states and
operators with only real coefficients.
In this paper, we show that one can still do a meaningful self-test of
quantum apparatus with complex amplitudes. In particular, we define a family of
simulations of quantum experiments, based on complex conjugation, with two
interesting properties. First, we are able to define a self-test which may be
passed only by states and operators that are equivalent to simulations within
the family. This extends work of Mayers and Yao and Magniez et al. in
self-testing of quantum apparatus, and includes a complex measurement. Second,
any of the simulations in the family may be used to implement a secure 6-state
QKD protocol, which was previously not known to be implementable in a
self-tested framework.Comment: To appear in proceedings of TQC 201
Heralded qubit amplifiers for practical device-independent quantum key distribution
Device-independent quantum key distribution does not need a precise quantum
mechanical model of employed devices to guarantee security. Despite of its
beauty, it is still a very challenging experimental task. We compare a recent
proposal by Gisin et al. [Phys. Rev. Lett. 105, 070501 (2010)] to close the
detection loophole problem with that of a simpler quantum relay based on
entanglement swapping with linear optics. Our full-mode analysis for both
schemes confirms that, in contrast to recent beliefs, the second scheme can
indeed provide a positive key rate which is even considerably higher than that
of the first alternative. The resulting key rates and required detection
efficiencies of approx. 95% for both schemes, however, strongly depend on the
underlying security proof.Comment: 5 pages, 3 figure
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
Three-intensity decoy state method for device independent quantum key distribution with basis dependent errors
We study the measurement device independent quantum key distribution (MDIQKD)
in practice with limited resource, when there are only 3 different states in
implementing the decoy-state method and when there are basis dependent coding
errors. We present general formulas for the decoy-state method for two-pulse
sources with 3 different states, which can be applied to the recently proposed
MDIQKD with imperfect single-photon source such as the coherent states or the
heralded states from the parametric down conversion. We point out that the
existing result for secure QKD with source coding errors does not always hold.
We find that very accurate source coding is not necessary. In particular, we
loosen the precision of existing result by several magnitude orders for secure
QKD.Comment: Published version with Eq.(17) corrected. We emphasize that our major
result (Eq.16) for the decoy-state part can be applied to generate a key rate
very close to the ideal case of using infinite different coherent states, as
was numerically demonstrated in Ref.[21]. Published in PRA, 2013, Ja
Unconditionally secure key distillation from multi-photons
In this paper, we prove that the unconditionally secure key can be
surprisingly extracted from {\it multi}-photon emission part in the photon
polarization-based QKD. One example is shown by explicitly proving that one can
indeed generate an unconditionally secure key from Alice's two-photon emission
part in ``Quantum cryptography protocols robust against photon number splitting
attacks for weak laser pulses implementations'' proposed by V. Scarani {\it et
al.,} in Phys. Rev. Lett. {\bf 92}, 057901 (2004), which is called SARG04. This
protocol uses the same four states as in BB84 and differs only in the classical
post-processing protocol. It is, thus, interesting to see how the classical
post-processing of quantum key distribution might qualitatively change its
security. We also show that one can generate an unconditionally secure key from
the single to the four-photon part in a generalized SARG04 that uses six
states. Finally, we also compare the bit error rate threshold of these
protocols with the one in BB84 and the original six-state protocol assuming a
depolarizing channel.Comment: The title has changed again. We considerably improved our
presentation, and furthermore we proposed & analyzed a security of a modified
SARG04 protocol, which uses six state
Security of differential phase shift quantum key distribution against individual attacks
We derive a proof of security for the Differential Phase Shift Quantum Key
Distribution (DPSQKD) protocol under the assumption that Eve is restricted to
individual attacks. The security proof is derived by bounding the average
collision probability, which leads directly to a bound on Eve's mutual
information on the final key. The security proof applies to realistic sources
based on pulsed coherent light. We then compare individual attacks to
sequential attacks and show that individual attacks are more powerful
- …