234 research outputs found
Emerging genotype-phenotype relationships in patients with large NF1 deletions.
The most frequent recurring mutations in neurofibromatosis
type 1 (NF1) are large deletions encompassing
the NF1 gene and its flanking regions (NF1 microdeletions).
The majority of these deletions encompass 1.4-Mb
and are associated with the loss of 14 protein-coding genes
and four microRNA genes. Patients with germline type-1
NF1 microdeletions frequently exhibit dysmorphic facial
features, overgrowth/tall-for-age stature, significant delay
in cognitive development, large hands and feet, hyperflexibility
of joints and muscular hypotonia. Such patients
also display significantly more cardiovascular anomalies
as compared with patients without large deletions and
often exhibit increased numbers of subcutaneous, plexiform
and spinal neurofibromas as compared with the general
NF1 population. Further, an extremely high burden of
internal neurofibromas, characterised by >3000 ml tumour
volume, is encountered significantly, more frequently,
in non-mosaic NF1 microdeletion patients than in NF1
patients lacking such deletions. NF1 microdeletion patients
also have an increased risk of malignant peripheral nerve
sheath tumours (MPNSTs); their lifetime MPNST risk is
16â26%, rather higher than that of NF1 patients with intragenic
NF1 mutations (8â13%). NF1 microdeletion patients,
therefore, represent a high-risk group for the development
of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition
to NF1 further increases the MPNST risk in NF1 microdeletion
patients. Here, we summarise current knowledge
about genotypeâphenotype relationships in NF1 microdeletion
patients and discuss the potential role of the genes
located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotyp
Ultrasound Findings of DelayedâOnset Muscle Soreness
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135570/1/jum201635112517.pd
The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis
Schwannomatosis is characterized by the predisposition to develop multiple schwannomas and, less commonly, meningiomas. Despite the clinical overlap with neurofibromatosis type 2 (NF2), schwannomatosis is not caused by germline NF2 gene mutations. Instead, germline mutations of either the SMARCB1 or LZTR1 tumour suppressor genes have been identified in 86% of familial and 40% of sporadic schwannomatosis patients. In contrast to patients with rhabdoid tumours, which are due to complete loss-of-function SMARCB1 mutations, individuals with schwannomatosis harbour predominantly hypomorphic SMARCB1 mutations which give rise to the synthesis of mutant proteins with residual function that do not cause rhabdoid tumours. Although biallelic mutations of SMARCB1 or LZTR1 have been detected in the tumours of patients with schwannomatosis, the classical two-hit model of tumorigenesis is insufficient to account for schwannoma growth, since NF2 is also frequently inactivated in these tumours. Consequently, tumorigenesis in schwannomatosis must involve the mutation of at least two different tumour suppressor genes, an occurrence frequently mediated by loss of heterozygosity of large parts of chromosome 22q harbouring not only SMARCB1 and LZTR1 but also NF2. Thus, schwannomatosis is paradigmatic for a tumour predisposition syndrome caused by the concomitant mutational inactivation of two or more tumour suppressor genes. This review provides an overview of current models of tumorigenesis and mutational patterns underlying schwannomatosis that will ultimately help to explain the complex clinical presentation of this rare disease
Mutations and Allelic Loss of the NF2 Gene in Neurofibromatosis 2-Associated Skin Tumors
Schwannomas in the skin are frequently observed in neurofibromatosis 2 patients. In about one-quarter of the cases, skin tumors are the first clinical symptoms of this disease. Recognizing neurofibromatosis-2-related skin tumors is therefore important for early diagnosis of neurofibromatosis 2, especially in pediatric patients. In this study, we examined 40 skin tumors (36 schwannomas and four neurofibromas) from 20 neurofibromatosis 2 patients for NF2 mutations and allelic loss. NF2 mutations have been identified in blood from 15 (75%) of the 20 patients. We found NF2 mutations in five (13%) and NF2 allelic loss in 18 (45%) of the 40 analyzed tumors. Genetic alterations (allelic loss or mutation) were thus found in 50 (63%) out of the total of 80 examined alleles. In 17 (43%) tumors, alterations were found on both NF2 alleles. These results suggest that, as in the case of vestibular schwannomas and meningiomas, loss of functional NF2 gene product is also the critical event in the development of skin schwannomas. Identification of genetic alterations of the NF2 gene in skin tumors may help to identify neurofibromatosis-2-associated skin tumors, thus assisting in the diagnosis of neurofibromatosis 2 in ambiguous cases, and excluding neurofibromatosis 1 in unclear cases. We also report that the detection rate of constitutional mutations was higher in patients with skin tumors (65%) than in patients without skin tumors (40%)
Do hormonal contraceptives stimulate growth of neurofibromas? A survey on 59 NF1 patients
BACKGROUND: Neurofibromas are benign tumors of the peripheral nerves and hallmark of neurofibromatosis type 1 (NF1), a tumor suppressor gene syndrome. Neurofibromas mostly start developing at puberty and can increase in size and number during pregnancy. Expression of progesterone receptors has been found in 75% of the tumors. Many female NF1 patients are thus concerned about the possibility that hormonal contraceptives may stimulate the growth of their neurofibromas. METHODS: A survey was carried out on 59 female NF1 patients who are practicing or have practiced hormonal contraception to examine the effect of the various contraceptives on the growth of neurofibromas. RESULTS: Majority (53 out of 58) of patients who received oral estrogen-progestogen or pure progestogen preparations reported no associated tumor growth. In contrast, significant tumor growth was reported by two patients who received depot contraceptive containing high dose of synthetic progesterone. CONCLUSIONS: Oral contraceptives do not seem to stimulate the growth of neurofibromas in NF1 patients. High doses of progesterone might stimulate the growth of neurofibromas and deserve more caution
Sulindac derivatives inhibit cell growth and induce apoptosis in primary cells from malignant peripheral nerve sheath tumors of NF1-patients
BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are neoplasms leading to death in most cases. Patients with Neurofibromatosis type 1 have an increased risk of developing this malignancy. The metabolites of the inactive prodrug Sulindac, Sulindac Sulfide and Sulindac Sulfone (Exisulind) are new chemopreventive agents that show promising results in the treatment of different cancer types. In this study we examined the antineoplastic effect of these compounds on primary cells derived from two MPNSTs of Neurofibromatosis type 1 patients. RESULTS: Exisulind and Sulindac Sulfide showed a dramatic time- and dose-dependent growth inhibitory effect with IC50-values of 120 ÎŒM and 63 ÎŒM, respectively. The decrease in viability of the tested cells correlated with induction of apoptosis. Treatment with 500 ÎŒM Exisulind and 125 ÎŒM Sulindac Sulfide for a period of 2 days increased the rate of apoptosis 21-27-fold compared to untreated cells. Reduced expression of RAS-GTP and phosphorylated ERK1/2 was detected in treated MPNST cells. Moreover, elevated levels of phosphorylated SAPK/JNK were found after drug treatment, and low activation of cleaved caspase-3 was seen. CONCLUSIONS: Our results suggest that this class of compounds may be of therapeutic benefit for Neurofibromatosis type 1 patients with MPNST
Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1microdeletions
BACKGROUND: Neurofibromatosis type-1 (NF1) is caused by mutations of the NF1 gene at 17q11.2. In 95% of non-founder NF1 patients, NF1 mutations are identifiable by means of a comprehensive mutation analysis. 5-10% of these patients harbour microdeletions encompassing the NF1 gene and its flanking regions. NF1 is characterised by tumours of the peripheral nerve sheaths, the pathognomonic neurofibromas. Considerable inter- and intra-familial variation in expressivity of the disease has been observed which is influenced by genetic modifiers unrelated to the constitutional NF1 mutation. The number of plexiform neurofibromas (PNF) in NF1 patients is a highly heritable genetic trait. Recently, SNP rs2151280 located within the non-coding RNA gene ANRIL at 9p21.3, was identified as being strongly associated with PNF number in a family-based association study. The T-allele of rs2151280, which correlates with reduced ANRIL expression, appears to be associated with higher PNF number. ANRIL directly binds to the SUZ12 protein, an essential component of polycomb repressive complex 2, and is required for SUZ12 occupancy of the CDKN2A/CDKN2B tumour suppressor genes as well as for their epigenetic silencing. METHODS: Here, we explored a potential association of PNF number and PNF volume with SNP rs2151280 in 29 patients with constitutional NF1 microdeletions using the exact Cochran-Armitage test for trends and the exact MannâWhitneyâWilcoxon test. Both the PNF number and total tumour volume in these 29 NF1 patients were assessed by whole-body MRI. The NF1 microdeletions observed in these 29 patients encompassed the NF1 gene as well as its flanking regions, including the SUZ12 gene. RESULTS: In the 29 microdeletion patients investigated, neither the PNF number nor PNF volume was found to be associated with the T-allele of rs2151280. CONCLUSION: Our findings imply that, at least in patients with NF1 microdeletions, PNF susceptibility is not associated with rs2151280. Although somatic inactivation of the NF1 wild-type allele is considered to be the PNF-initiating event in NF1 patients with intragenic mutations and patients with NF1 microdeletions, both patient groups may differ with regard to tumour progression because of the heterozygous constitutional deletion of SUZ12 present only in patients with NF1 microdeletions
Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions
Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding
Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients
AbstractBackgroundCognitive difficulties are the most common neurological complications in neurofibromatosis type 1 (NF1) patients. Recent animal models proposed increased GABA-mediated inhibition as one underlying mechanism directly affecting the induction of long-term potentiation (LTP) and learning. In most adult NF1 patients, apparent cognitive and attentional deficits, tumors affecting the nervous system and other confounding factors for neuroscientific studies are difficult to control for. Here we used a highly specific group of adult NF1 patients without cognitive or nervous system impairments. Such selected NF1 patients allowed us to address the following open questions: Is the learning process of acquiring a challenging motor skill impaired in NF1 patients? And is such an impairment in relation to differences in intracortical inhibition?MethodsWe used an established non-invasive, double-pulse transcranial magnetic stimulation (dp-TMS) paradigm to assess practice-related modulation of intracortical inhibition, possibly mediated by gamma-minobutyric acid (GABA)ergic-neurotransmission. This was done during an extended learning paradigm in a group of NF1 patients without any neuropsychological deficits, functioning normally in daily life and compared them to healthy age-matched controls.FindingsNF1 patients experienced substantial decline in motor skill acquisition (F=9.2, p=0.008) over five-consecutives training days mediated through a selective reduction in the early acquisition (online) and the consolidation (offline) phase. Furthermore, there was a consistent decrease in task-related intracortical inhibition as a function of the magnitude of learning (T=2.8, p=0.014), especially evident after the early acquisition phase.InterpretationsCollectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work
Growth dynamics of plexiform neurofibromas: a retrospective cohort study of 201 patients with neurofibromatosis 1
BACKGROUND: To examine the natural growth dynamics of internal plexiform neurofibromas (PNs) in patients with neurofibromatosis 1 (NF1). METHODS: Two hundred and one NF1 patients underwent whole body MRI (WBMRI). Tumour burden was estimated volumetrically. Non-parametric Spearmanâs rho correlation coefficients were used to analyse the relationship of growth rate to tumour volume and age. Chi-squared and MannâWhitney U tests were used for analysing the association of tumour occurrence with sex or age. Chi-squared tests were used to analyse the association of tumour growth with age group. RESULTS: Seventy-one of 171 patients with serial WBMRI exams had internal PNs (median follow up 2.2 years [1.1 to 4.9 years]). Median whole body tumour volume was 86.4 mL [5.2 to 5878.5 mL]) with a median growth rate of 3.7%/year (â13.4 to 111%/year) that correlated with larger whole body tumour volume (P<0.001) and lower age (P=0.004). No new PNs developed in 273.0 patient-years among patients without tumours. Rate of new tumour development among patients with PNs was 0.6%/year (95% confidence interval 0.02 to 3.4%). Twenty-seven (13.5%) tumours increased significantly and were more frequent among children (P<0.001). Growth rate of tumours was inversely correlated with age (Spearmanâs rho=â0.330, P<0.001). Seventy-one (35.5%) tumours had smaller volumes on follow up (median â3.4%/year [â0.07% to â35.9%/year]). CONCLUSION: Children with NF1 and internal PNs are at risk for tumour growth. Most PNs grow slowly or not at all, and some decrease in size. New tumours are infrequent in NF1 patients with PNs and unlikely in patients without PNs
- âŠ