269 research outputs found

    Chromium-based coatings by atmospheric chemical vapor deposition at low temperature from Cr(CO)6

    Get PDF
    Cr-based coatings were grown under atmospheric pressure in different gaseous atmospheres (N2,H2, NH3) from the thermal decomposition of Cr(CO)6 at 300 °C in a cold-wall CVD reactor. Cr(CO)6 is a good candidate as precursor because of its low cost and its high volatility, which permits high flow rates. Original chromium oxycarbide and oxynitride coatings were deposited on steel. These phases were previously obtained by plasma-assisted CVD and low-pressure CVD, i.e., under nonequilibrium conditions. In the present work, the low deposition temperature likely accounts for their formation. We have investigated correlations between the growth conditions and their main chemical, structural and physical features. Preliminary results on the mechanical behavior of these Cr-based coatings are also reported

    Nanocrystalline chromium-based coatings deposited by DLI-MOCVD under atmospheric pressure from Cr(CO)6

    Get PDF
    Nanocrystalline original Cr-based coatings were grown under atmospheric pressure by Direct Liquid Injection Metal Organic Chemical Vapor Deposition (DLI-MOCVD). The thin films were grown below 450 °C in a cold wall CVD reactor from solutions of Cr(CO)6 in toluene or THF injected and flash vaporized with or without NH3 addition prior to the deposition zone. Original nanocrystalline chromium oxycarbide and oxy-carbonitride phases were deposited on stainless steel substrates. The influence of injection parameters and conventional CVD conditions have been investigated on the main chemical, physical and structural characteristics of the coatings, as deduced from XRD, SEM, and EPMA analyses

    Chemical vapor deposition of TiO2 for photocatalytic applications and biocidal surfaces

    Get PDF
    Through a few examples, we present a short review on properties and applications of TiO2 films deposited by various CVD processes. The constraints due to the growth process make difficult optimization of properties that were correlated with microstructures. We focus on the photocatalytic activity in the visible range and on the antibacterial behavior of these functional thin layers

    Diagnostic in TCOs CVD processes by IR pyrometry

    Get PDF
    Infra red pyrometry is a sensitive, simple and low-cost technique commonly used for the measurement of the deposition temperature in CVD processes. We demonstrate in this work that this optical technique can be used as diagnostic tool to provide fruitful informations during the growth under atmospheric pressure of TiO2 films on various substrates chosen as an example of transparent oxide. Significant variations of the pyrometric signal were observed during the deposition of TiO2 thin films due to interferences in the growing film resulting from multi-reflections at the interfaces and scattering induced by the surface roughness. Modeling of the time dependence of the IR pyrometric signal allows simultaneously the determination of the layer thickness, the growth rate, surface roughness and refractive index of the thin films under the growth conditions. This diagnostic technique can be used for various transparent thin films grown on opaque substrates and is well adapted to control CVD processes operating either under atmospheric or low pressure and more generally any thermal treatment processes

    TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    Get PDF
    Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structural and mechanical properties. When a large excess of the nitrogen source is used the resulting film contains ca 17 at % of nitrogen and forms dense and amorphous TiOxNy films. Growth rates of these amorphous TiO1.5N0.5 coatings as high as 14 μm/h were obtained under atmospheric pressure. The influence of the deposition conditions on the morphology, the structure, the composition and the growth rate of the films is presented. For the particular conditions leading to the growth of amorphous TiO1.5N0.5 coatings, first studies on the mechanical properties of samples grown on stainless steel have revealed a high hardness, a low friction coefficient, and a good wear resistance in unlubricated sliding experiments against alumina which make them very attractive as protective metallurgical coatings

    Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates

    Get PDF
    Photocatalytically active, N-doped TiO2 thin films were prepared by low pressure metalorganic chemical vapor deposition (MOCVD) using titanium tetra-iso-propoxide (TTIP) as a precursor and NH3 as a reactive doping gas. We present the influence of the growth parameters (temperature, reactive gas phase composition) on the microstructural and physico-chemical characteristics of the films, as deduced from X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and ultra-violet and visible (UV/Vis) spectroscopy analysis. The N-doping level was controlled by the partial pressure ratio R=[NH3]/[TTIP] at the entrance of the reactor and by the substrate temperature. For R=2200, the N-doped TiO2 layers are transparent and exhibit significant visible light photocatalytic activity (PA) in a narrow growth temperature range (375–400 °C). The optimum N-doping level is approximately 0.8 at.%. However, the PA activity of these N-doped films, under UV light radiation, is lower than that of undoped TiO2 films of comparable thickness

    Vapor phase surface functionalization under ultra violet activation of parylene thin films grown by chemical vapor deposition

    Get PDF
    Various reactive gas phase treatments have been investigated as surface functionalization dry processes with the goal to improve the wettability of parylene C films, keeping good optical properties in the visible range. The films were grown on different substrates by chemical vapor deposition with thicknesses ranging from 300 to 1630 nm. The polymer surface was treated under ultra violet (UV) irradiation at 254 nm in reactive atmospheres including He, H2O, H2O2, O2 and ambient air. The UV/O2 treatment is the most efficient since the water contact angle decreases from 100° to 6° while the transmittance is maintained at 90% in the visible wavelengths. Furthermore it exhibits long life stability. The functionalization mechanism is discussed in relation with previous reports

    Chemical vapor infiltration of photocatalytically active TiO2 thin films on glass microfibers

    Get PDF
    Due to the high diffusivity of the chemical species, chemical vapor infiltration (CVI) is a suitable process for the conformal coverage of objects with large dimensions and complex shape geometry. Its large scale capacity and high reproducibility have made the technique favorable for the deposition of non-oxide ceramics. There are few works on other materials and metal-organic compounds are rarely used as molecular precursors. In this study we focus on the deposition of anatase thin films on substrates with large surface area (microfibers) for photocatalytic air treatment systems. Titanium tetra-isopropoxide (TTIP) was used as precursor without additional oxygen source. Using low mole fractions (26–124×10−5) and low deposition temperatures (300–400 °C), a relatively good thickness uniformity was obtained along the reactor axis. Infiltration experiments were achieved in this temperature range and under 1 Torr for high TTIP diffusivity (110–146 cm2 s−1) and low initial Thiele modulus (0.11–0.13) values. Photocatalytic activity of TiO2 coated glass microfiber samples depends on the film morphology, average thickness and infiltration efficiency. It is shown that this later parameter plays a major role due to the increase of active surface area

    Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications

    Get PDF
    TiO2 thin films were deposited under atmospheric pressure by MOCVD in the temperature range 400–600 °C on stainless steel and Si(100) substrates. Titanium tetraisopropoxide (TTIP) was used as Ti and O source. Single-phased anatase and bi-phased (anatase/rutile) coatings with controlled composition have been deposited depending on the temperature and the TTIP mole fraction. The films grown on stainless steel at low temperature (b420 °C) and low TTIP mole fraction (b10−4) are constituted of pure anatase and they exhibit a high photocatalytic activity under UV light and a high hydrophilicity. In the temperature range 430–600 °C the rutile starts growing leading to anatase/rutile mixtures and subsequently to a progressive decrease of both photocatalytic activity and wettability. Correlations between functional properties and microstructure of the films are discussed

    Pyrosol deposition of anatase TiO2 thin films starting from Ti(OiPr)4/acetylacetone solutions

    Get PDF
    TiO2 thin films were deposited on Si(100) and steel substrates by Pyrosol technique. The layer morphology depends on the concentration of titanium tetra-isopropoxide (TTIP) used as molecular precursor in solutions with acetylacetone (Acac). The concentration and, as a result, the viscosity of these TTIP/Acac starting solutions plays an important role on the efficiency of their nebulization and, consequently, on the microstructure and the growth kinetics of the TiO2 thin films. The correlations between the composition of the TTIP/Acac solutions and the structure, the morphology, optical properties and the deposition rate of the films are presented and discussed. Growth rates as high as 1.8 μm/min are obtained using pure TTIP without Acac solvent. The photocatalytic activity of these Pyrosol TiO2 thin films grown using TTIP with and without Acac solvent has been investigated and a negative effect of the solvent was found
    • …
    corecore