41 research outputs found

    Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    Get PDF
    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into a final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C

    Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Full text link
    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds

    Thermal Wadis in Support of Lunar Exploration: Concept Development and Utilization

    Get PDF
    Thermal wadis, engineered sources of heat, can be used to extend the life of lunar rovers by keeping them warm during the extreme cold of the lunar night. Thermal wadis can be manufactured by sintering or melting lunar regolith into a solid mass with more than two orders of magnitude higher thermal diffusivities compared to native regolith dust. Small simulant samples were sintered and melted in the electrical furnaces at different temperatures, different heating and cooling rates, various soaking times, under air, or in an argon atmosphere. The samples were analyzed with scanning electron microscopy and energy dispersive spectroscopy, X-ray diffraction, a laser-flash thermal diffusivity system, and the millimeter-wave system. The melting temperature of JSC-1AF simulant was ~50°C lower in an Ar atmosphere compared to an air atmosphere. The flow of Ar during sintering and melting resulted in a small mass loss of 0.04 to 0.1 wt% because of the volatization of alkali compounds. In contrast, the samples that were heat-treated under an air atmosphere gained from 0.012 to 0.31 wt% of the total weight. A significantly higher number of cavities were formed inside the samples melted under an argon atmosphere, possibly because of the evolution of oxygen bubbles from iron redox reactions. The calculated emissivity of JSCf-1AF simulant did not change much with temperature, varying between 0.8 and 0.95 at temperatures from 100 to 1200°C. The thermal diffusivities of raw regolith that was compressed under a pressure of 9 metric tons ranged from 0.0013 to 00011 in the 27 to 390°C temperature range. The thermal diffusivities of sintered and melted JSC-1AF simulant varied from 0.0028 to 0.0072 cm2/s with the maximum thermal diffusivities observed in the samples that were heated up 5°C/min from RT to 1150°C under Ar or air. These thermal diffusivities are high enough for the rovers to survive the extreme cold of the Moon at the rim of the Shackleton Crater and allow them to operate for months (or years) as opposed to weeks on the lunar surface. Future investigations will be focused on a system that can efficiently construct a thermal wadi from the lunar mare regolith. Solar heating, microwave heating, or electrical resistance melting are considered

    Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel

    Get PDF
    This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with iodine. This dry-air aging simulated the impact of long-term exposure to process gases during process idling. The 6-month aged sample exhibited an iodine sorption capacity of 32 mass%, which was 9 mass % lower than that for an un-aged Ag0-functionalized silica aerogel. In an attempt to understand this decrease in sorption capacity, we characterized physical properties of the aged samples with Brunauer-Emmett-Teller (BET) nitrogen adsorption, X-ray diffraction (XRD), and high resolution scanning electron microscopy (SEM). The results showed no impact of aging on the aerogel microstructure or the silver nanoparticles in the aerogel, including their spatial distribution and morphology

    Alternative Waste Forms for Electro-Chemical Salt Waste

    Get PDF
    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form

    HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Get PDF
    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition

    Summary Report for the Development of Materials for Volatile Radionuclides

    Get PDF
    The materials development summarized here is in support of the Waste Forms campaign, Volatile Radionuclide task. Specifically, materials are being developed for the removal and immobilization of iodine and krypton, specifically 129I and 85Kr. During FY 2010, aerogel materials were investigated for removal and immobilization of 129I. Two aerogel formulations were investigated, one based on silica aerogels and the second on chalcogenides. For 85Kr, metal organic framework (MOF) structures were investigated
    corecore