94 research outputs found

    A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer

    Get PDF
    © 2020 American Association for Cancer Research Inc.. All rights reserved. Purpose: Platinum resistance in ovarian cancer is associated with epigenetic modifications. Hypomethylating agents (HMA) have been studied as carboplatin resensitizing agents in ovarian cancer. This randomized phase II trial compared guadecitabine, a second-generation HMA, and carboplatin (GþC) against second-line chemotherapy in women with measurable or detectable platinum-resistant ovarian cancer. Patients and Methods: Patients received either GþC (guadecitabine 30 mg/m2 s.c. once-daily for 5 days and carboplatin) or treatment of choice (TC; topotecan, pegylated liposomal doxorubicin, paclitaxel, or gemcitabine) in 28-day cycles until progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were RECIST v1.1 and CA-125 response rate, 6-month PFS, and overall survival (OS). Results: Of 100 patients treated, 51 received GþC and 49 received TC, of which 27 crossed over to GþC. The study did not meet its primary endpoint as the median PFS was not statistically different between arms (16.3 weeks vs. 9.1 weeks in the GþC and TC groups, respectively; P ¼ 0.07). However, the 6-month PFS rate was significantly higher in the GþC group (37% vs. 11% in TC group; P ¼ 0.003). The incidence of grade 3 or higher toxicity was similar in GþC and TC groups (51% and 49%, respectively), with neutropenia and leukopenia being more frequent in the GþC group. Conclusions: Although this trial did not show superiority for PFS of GþC versus TC, the 6-month PFS increased in GþC treated patients. Further refinement of this strategy should focus on identification of predictive markers for patient selection

    Safety and dose modification for patients receiving niraparib

    Get PDF
    Background: Niraparib is a poly(ADP-ribose) polymerase (PARP) inhibitor approved in the United States and Europe for maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy. In the pivotal ENGOT-OV16/NOVA trial, the dose reduction rate due to TEAE was 68.9%, and the discontinuation rate due to TEAE was 14.7%, including 3.3% due to thrombocytopenia. A retrospective analysis was performed to identify clinical parameters that predict dose reductions. Patients and methods: All analyses were performed on the safety population, comprising all patients who received at least one dose of study drug. Patients were analyzed according to the study drug consumed (ie, as treated). A predictive modeling method (decision trees) was used to identify important variables for predicting the likelihood of developing grade ≥3 thrombocytopenia within 30 days after the first dose of niraparib and determine cutoff points for chosen variables. Results: Following dose modification, 200 mg was the most commonly administered dose in the ENGOT-OV16/NOVA trial. Baseline platelet count and baseline body weight were identified as risk factors for increased incidence of grade ≥3 thrombocytopenia. Patients with a baseline body weight <77 kg or a baseline platelet count <150,000/μL in effect received an average daily dose approximating 200 mg (median = 207 mg) due to dose interruption and reduction. Progression-free survival in patients who were dose reduced to either 200 mg or 100 mg was consistent with that of patients who remained at the 300 mg starting dose. Conclusions: The analysis presented suggests that patients with baseline body weight of < 77 kg or baseline platelets of < 150,000/μL may benefit from a starting dose of 200 mg per day. (ClinicalTrials.gov ID: NCT01847274)

    Use of an orthovoltage X-ray treatment unit as a radiation research system in a small-animal cancer model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We explore the use of a clinical orthovoltage X-ray treatment unit as a small-animal radiation therapy system in a tumoral model of cervical cancer.</p> <p>Methods</p> <p>Nude mice were subcutaneously inoculated with 5 × 10<sup>6 </sup>HeLa cells in both lower limbs. When tumor volume approximated 200 mm<sup>3 </sup>treatment was initiated. Animals received four 2 mg/kg intraperitoneal cycles (1/week) of cisplatin and/or 6.25 mg/kg of gemcitabine, concomitant with radiotherapy. Tumors were exposed to 2.5 Gy/day nominal surface doses (20 days) of 150 kV X-rays. Lead collimators with circular apertures (0.5 to 1.5 cm diameter) were manufactured and mounted on the applicator cone to restrict the X-ray beam onto tumors. X-ray penetration and conformality were evaluated by measuring dose at the surface and behind the tumor lobe by using HS GafChromic film. Relative changes in tumor volume (RTV) and a clonogenic assay were used to evaluate the therapeutic response of the tumor, and relative weight loss was used to assess toxicity of the treatments.</p> <p>Results</p> <p>No measurable dose was delivered outside of the collimator apertures. The analysis suggests that dose inhomogeneities in the tumor reach up to ± 11.5% around the mean tumor dose value, which was estimated as 2.2 Gy/day. Evaluation of the RTV showed a significant reduction of the tumor volume as consequence of the chemoradiotherapy treatment; results also show that toxicity was well tolerated by the animals.</p> <p>Conclusion</p> <p>Results and procedures described in the present work have shown the usefulness and convenience of the orthovoltage X-ray system for animal model radiotherapy protocols.</p

    IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability

    Get PDF
    The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3′-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/ Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth. © 2009 Ernst et al

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    A phase I clinical trial of continual alternating etoposide and topotecan in refractory solid tumours

    Get PDF
    The goal of this phase I study was to develop a novel schedule using oral etoposide and infusional topotecan as a continually alternating schedule with potentially optimal reciprocal induction of the nontarget topoisomerase. The initial etoposide dose was 15 mg m−2 b.i.d. days (D)1–5 weeks 1,3,5,7,9 and 11, escalated 5 mg per dose per dose level (DL). Topotecan in weeks 2,4,6,8,10 and 12 was administered by 96 h infusion at an initial dose of 0.2 mg m−2 day−1 with a dose escalation of 0.1, then at 0.05 mg m−2 day−1. Eligibility criteria required no organ dysfunction. Two dose reductions or delays were allowed. A total of 36 patients with a median age of 57 (22–78) years, received a median 8 (2–19) weeks of chemotherapy. At DL 6, dose-limiting toxicities consisted of grade 3 nausea, vomiting and intolerable fatigue. Three patients developed a line-related thrombosis or infection and one subsequently developed AML. There was no febrile neutropenia. There were six radiologically confirmed responses (18%) and 56% of patients demonstrated a response or stable disease, typically with only modest toxicity. Oral etoposide 35 mg m−2 b.i.d. D1–5 and 1.8 mg m−2 96 h (total dose) infusional topotecan D8–11 can be administered on an alternating continual weekly schedule for at least 12 weeks, with promising clinical activity

    First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration

    Get PDF
    We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior

    First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way

    Get PDF
    We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of lambda = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 +/- 2.3 mu as (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass similar to 4 x 10(6) M (circle dot), which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50 degrees), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 10(3)-10(5) gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 ± 0.7) × 109 Me. Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible

    First M87 Event Horizon Telescope Results. II. Array and Instrumentation

    Get PDF
    The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s−1, exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87
    • …
    corecore