96 research outputs found
To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case
In parametric equations - stochastic equations are a special case - one may
want to approximate the solution such that it is easy to evaluate its
dependence of the parameters. Interpolation in the parameters is an obvious
possibility, in this context often labeled as a collocation method. In the
frequent situation where one has a "solver" for the equation for a given
parameter value - this may be a software component or a program - it is evident
that this can independently solve for the parameter values to be interpolated.
Such uncoupled methods which allow the use of the original solver are classed
as "non-intrusive". By extension, all other methods which produce some kind of
coupled system are often - in our view prematurely - classed as "intrusive". We
show for simple Galerkin formulations of the parametric problem - which
generally produce coupled systems - how one may compute the approximation in a
non-intusive way
Sparse bayesian polynomial chaos approximations of elasto-plastic material models
In this paper we studied the uncertainty quantification in a functional approximation form of elastoplastic models parameterised by material uncertainties. The problem of estimating the polynomial chaos coefficients is recast in a linear regression form by taking into consideration the possible sparsity of the solution. Departing from the classical optimisation point of view, we take a slightly different path by solving the problem in a Bayesian manner with the help of new spectral based sparse Kalman filter algorithms
Inverse problems and uncertainty quantification
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) -
the propagation of uncertainty through a computational (forward) model - are
strongly connected. In the form of conditional expectation the Bayesian update
becomes computationally attractive. This is especially the case as together
with a functional or spectral approach for the forward UQ there is no need for
time-consuming and slowly convergent Monte Carlo sampling. The developed
sampling-free non-linear Bayesian update is derived from the variational
problem associated with conditional expectation. This formulation in general
calls for further discretisation to make the computation possible, and we
choose a polynomial approximation. After giving details on the actual
computation in the framework of functional or spectral approximations, we
demonstrate the workings of the algorithm on a number of examples of increasing
complexity. At last, we compare the linear and quadratic Bayesian update on the
small but taxing example of the chaotic Lorenz 84 model, where we experiment
with the influence of different observation or measurement operators on the
update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with
arXiv:1201.404
Parameter Estimation via Conditional Expectation --- A Bayesian Inversion
When a mathematical or computational model is used to analyse some system, it
is usual that some parameters resp.\ functions or fields in the model are not
known, and hence uncertain. These parametric quantities are then identified by
actual observations of the response of the real system. In a probabilistic
setting, Bayes's theory is the proper mathematical background for this
identification process. The possibility of being able to compute a conditional
expectation turns out to be crucial for this purpose. We show how this
theoretical background can be used in an actual numerical procedure, and
shortly discuss various numerical approximations
Bayesian parameter identification in plasticity
To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are usually identified by minimization of the distance between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article the Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of Bayes’s theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency of the identification method is discussed
- …