96 research outputs found

    To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case

    Get PDF
    In parametric equations - stochastic equations are a special case - one may want to approximate the solution such that it is easy to evaluate its dependence of the parameters. Interpolation in the parameters is an obvious possibility, in this context often labeled as a collocation method. In the frequent situation where one has a "solver" for the equation for a given parameter value - this may be a software component or a program - it is evident that this can independently solve for the parameter values to be interpolated. Such uncoupled methods which allow the use of the original solver are classed as "non-intrusive". By extension, all other methods which produce some kind of coupled system are often - in our view prematurely - classed as "intrusive". We show for simple Galerkin formulations of the parametric problem - which generally produce coupled systems - how one may compute the approximation in a non-intusive way

    Sparse bayesian polynomial chaos approximations of elasto-plastic material models

    Get PDF
    In this paper we studied the uncertainty quantification in a functional approximation form of elastoplastic models parameterised by material uncertainties. The problem of estimating the polynomial chaos coefficients is recast in a linear regression form by taking into consideration the possible sparsity of the solution. Departing from the classical optimisation point of view, we take a slightly different path by solving the problem in a Bayesian manner with the help of new spectral based sparse Kalman filter algorithms

    Inverse problems and uncertainty quantification

    Get PDF
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) model - are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with arXiv:1201.404

    Parameter Estimation via Conditional Expectation --- A Bayesian Inversion

    Get PDF
    When a mathematical or computational model is used to analyse some system, it is usual that some parameters resp.\ functions or fields in the model are not known, and hence uncertain. These parametric quantities are then identified by actual observations of the response of the real system. In a probabilistic setting, Bayes's theory is the proper mathematical background for this identification process. The possibility of being able to compute a conditional expectation turns out to be crucial for this purpose. We show how this theoretical background can be used in an actual numerical procedure, and shortly discuss various numerical approximations

    Bayesian parameter identification in plasticity

    Get PDF
    To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are usually identified by minimization of the distance between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article the Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of Bayes’s theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency of the identification method is discussed
    corecore