47 research outputs found

    Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies

    Get PDF
    Surface segregation in binary colloidal mixtures offers a simple way to control both surface and bulk properties without affecting their bulk composition. Here, we combine experiments and coarse-grained molecular dynamics (CG-MD) simulations to delineate the effects of particle chemistry and size on surface segregation in photonic colloidal assemblies from binary mixtures of melanin and silica particles of size ratio (Dlarge/Dsmall) ranging from 1.0 to similar to 2.2. We find that melanin and/or smaller particles segregate at the surface of micrometer-sized colloidal assemblies (supraballs) prepared by an emulsion process. Conversely, no such surface segregation occurs in films prepared by evaporative assembly. CG-MD simulations explain the experimental observations by showing that particles with the larger contact angle (melanin) are enriched at the supraball surface regardless of the relative strength of particle-interface interactions, a result with implications for the broad understanding and design of colloidal particle assemblies

    From College To Jobs: Making Sense of Labor Market Returns To Higher Education

    Get PDF
    This report summarizes key findings from recent research on links between higher education and the workforce. Featuring eight brief papers from leading education and workforce experts from around the country, the report offers practical advice for institutional leaders, policymakers, students and their advisers about how to use the increasingly available information on the economic value of higher education. Specifically, the authors' papers and the opening summary explore what various audiences can learn from emerging evidence about: variations in labor market outcomes by program and institution; the value of degrees to jobs both in and out of fields studied; returns to the completion of certain course clusters that don't add up to a degree; and distortions that may result from examining returns to individual degrees rather than "stacked" degrees

    Bioinspired bright noniridescent photonic melanin supraballs

    Get PDF
    Structural colors enable the creation of a spectrumof nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (similar to 1.74) melanin cores and low-RI (similar to 1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics

    Structural Color Production in Melanin-based Disordered Colloidal Nanoparticle Assemblies in Spherical Confinement

    Full text link
    Melanin is a ubiquitous natural pigment that exhibits broadband absorption and high refractive index. Despite its widespread use in structural color production, how the absorbing material, melanin, affects the generated color is unknown. Using a combined molecular dynamics and finite-difference time-domain computational approach, this paper investigates structural color generation in one-component melanin nanoparticle-based supra-assemblies (called supraballs) as well as binary mixtures of melanin and silica (non-absorbing) nanoparticle-based supraballs. Experimentally produced one-component melanin and one-component silica supraballs, with thoroughly characterized primary particle characteristics using neutron scattering, produce reflectance profiles similar to the computational analogues, confirming that the computational approach correctly simulates both absorption and multiple scattering from the self-assembled nanoparticles. These combined approaches demonstrate that melanin's broadband absorption increases the primary reflectance peak wavelength, increases saturation, and decreases lightness factor. In addition, the dispersity of nanoparticle size more strongly influences the optical properties of supraballs than packing fraction, as evidenced by production of a larger range of colors when size dispersity is varied versus packing fraction. For binary melanin and silica supraballs, the chemistry-based stratification allows for more diverse color generation and finer saturation tuning than does the degree of mixing/demixing between the two chemistries.Comment: 40 pages, Figure

    Modeling Structural Colors from Disordered One-Component Colloidal Nanoparticle-based Supraballs using Combined Experimental and Simulation Techniques

    Full text link
    Bright, saturated structural colors in birds have inspired synthesis of self-assembled, disordered arrays of assembled nanoparticles with varied particle spacings and refractive indices. However, predicting colors of assembled nanoparticles, and thereby guiding their synthesis, remains challenging due to the effects of multiple scattering and strong absorption. Here, we use a computational approach to first reconstruct the nanoparticles' assembled structures from small-angle scattering measurements and then input the reconstructed structures to a finite-difference time-domain method to predict their color and reflectance. This computational approach is successfully validated by comparing its predictions against experimentally measured reflectance and provides a pathway for reverse engineering colloidal assemblies with desired optical and photothermal properties.Comment: 14 pages, 3 figures, 1 ToC figur

    Mechanism of Structural Colors in Binary Mixtures of Nanoparticle-based Supraballs

    Full text link
    Inspired by structural colors in avian species, various synthetic strategies have been developed to produce non-iridescent, saturated colors using nanoparticle assemblies. Mixtures of nanoparticles varying in particle chemistry (or complex refractive indices) and particle size have additional emergent properties that impact the color produced. For such complex multi-component systems, an understanding of assembled structure along with a robust optical modeling tool can empower scientists to perform intensive structure-color relationship studies and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments (CREASE) method and then use the reconstructed structure in finite-difference time-domain (FDTD) calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing melanin nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach presented in this work is useful for engineering synthetic materials with desired colors without laborious trial and error experiments.Comment: 23 Pages, 5 Figures, 1 ToC Figur

    Optical monitoring of polymerizations in droplets with high temporal dynamic range

    Get PDF
    The ability to optically monitor a chemical reaction and generate an in situ readout is an important enabling technology, with applications ranging from the monitoring of reactions in flow, to the critical assessment step for combinatorial screening, to mechanistic studies on single reactant and catalyst molecules. Ideally, such a method would be applicable to many polymers and not require only a specific monomer for readout. It should also be applicable if the reactions are carried out in microdroplet chemical reactors, which offer a route to massive scalability in combinatorial searches. We describe a convenient optical method for monitoring polymerization reactions, fluorescence polarization anisotropy monitoring, and show that it can be applied in a robotically generated microdroplet. Further, we compare our method to an established optical reaction monitoring scheme, the use of Aggregation-Induced Emission (AIE) dyes, and find the two monitoring schemes offer sensitivity to different temporal regimes of the polymerization, meaning that the combination of the two provides an increased temporal dynamic range. Anisotropy is sensitive at early times, suggesting it will be useful for detecting new polymerization “hits” in searches for new reactivity, while the AIE dye responds at longer times, suggesting it will be useful for detecting reactions capable of reaching higher molecular weights

    Interactions of melanin with electromagnetic radiation : from fundamentals to applications

    Full text link
    Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives

    Printing a wide gamut of saturated structural colors using binary mixtures, with applications in anticounterfeiting

    Full text link
    Use of colloidal suspensions to generate structural colors has the potential to reduce the use of toxic metals or organic pigments in inkjet printing, coatings, cosmetics, and other applications, and is a promising avenue to create large-scale nanostructures that produce long-lasting colors. However, expanded use of structural colors requires a reduction in coffee-ring effects during printing, which currently requires intricately patterned substrates or high particle concentrations, and diversification of colors to compete with conventional printing inks. Here, we treat substrate surfaces with cold plasma to facilitate spontaneous assembly of particles into colloidal nanostructures, reducing the need for highly concentrated particle suspensions. Moreover, by employing binary mixtures, we can tune the lightness of the hue produced or change the hue itself, allowing us to cover wider regions of color space. We demonstrate the use of this cold-plasma approach on a variety of substrates, favoring substrate diversity on which printing can be performed. This methodology enables creation of high-resolution, complex designs and opens a path for extending the limits of anticounterfeiting applications by using binary mixtures
    corecore