2,497 research outputs found

    Potentially toxic elements speciation in bottom ashes from a municipal solid waste incinerator: A combined SEM-EDS, ”-XRF and ”-XANES study

    Get PDF
    Bottom Ashes from Municipal Solid Waste Incinerators and Waste to Energy plants represent an interesting source of secondary raw materials for many applications, like urban mining and inclusion in concrete, and road pavement. However, Bottom Ashes may contain potentially toxic elements, whose actual toxicity depends essentially on their oxidation state and mineralogical environment. For this reason, a representative sample of bottom ashes from Parma Waste to Energy plant has been selected to investigate the chemical speciation of Cr, Ni, Pb, Co, Zn and Cu by means of complementary techniques: Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS), micro X-Ray Fluorescence (”-XRF) mapping and X-Ray Absorption Near Edge Structure (XANES) measurements by synchrotron radiation. This multi-technique approach allowed to obtain a general image of the mineralogical and chemical environment in which these elements are found. SEM-EDS analyses show the presence of Zn and Pb both in minerals and in glass matrix. Cr has been detected in the form of oxide and in spinel structure (chromite) whereas Co and Cu are found as alloy or metal inclusions. ”-XRF mapping reveals that Cu, Ni and Cr are generally associated to Na, K and Si suggesting their presence in glass matrix. XANES investigations exhibit that Cu has a variable oxidation state that suggesting its presence in the form of oxide, hydroxide, acetate and metal. Zn is mainly found as +II and in a number of different phases (including Zn-carbonates, in agreement with SEM-EDS data). Cr has been found only as +III, with XANES features resembling those of chromite, whereas as +VI was never identified. Ni and Co were found either as metal form and oxides. Pb spectra show a good match with oxides

    Tiered architecture for remote access to data sources

    Get PDF
    Teamwork is benefited by the use of shared data sources. Also, ever increasingly, organizational work depends on the activities of team members situated in different physical locations, including both employees who work from their homes and others who have been temporarily transferred to another place. Since, for all these reasons, accessing data remotely is a growing need, organizations implement internal systems in order to control shared data access according to user privileges. In this regard, the cost of resource transportation needed to generate communication must be considered. The main contribution of this paper is the extended reference layered architecture ICDFSCV (Interface Control and Distributed File Systems - Communication Versioning). It allows to build a solution that, facilitates documents download and the creation and concurrent modification by multiple users through versioning control.Facultad de InformĂĄtic

    Particle size and potential toxic element speciation in municipal solid waste incineration (Mswi) bottom ash

    Get PDF
    The speciation of potentially toxic elements (PTE) in bottom ashes from municipal solid waste incineration (MSWI) and their relationship with grain size is investigated. The proposed enrichment of several potential toxic elements in lower sized grains is discussed, comparing the literature and new data on Parma’s waste incinerator. Results from X-ray fluorescence spectrometry (XRF), SEM-EDS, and XRD analyses on different grain size show (1) a positive Si-trend, correlated with grain size and few lithophile elements, such as Zr and Rb. In Parma, Al, K, Mg, and Fe also correlate with Si for the portion below 2 mm; (2) a Ca-trend, with a strong negative correlation with Si and a positive correlation with loss on ignition (LOI), S, Cl, Ti, Zn, Pb, and Sn. Mineralogical composition shows a little change in grain size, as in previous investigations, but with substantial differences in amorphous content. SEM-EDS analysis shows that the amorphous portion is highly heterogeneous, with portions coming from melting during incineration, residual glass, and unburnt loss on ignition (LOI). The above results show that PTE elements are either present as metals (such as Cu and Ni, or Zn, Pb and Sn) in carbonate, sulfate, and amorphous residual LOI portions

    Long-term exposure to air pollution and COVID-19 incidence: a prospective study of residents in the city of Varese, Northern Italy

    Get PDF
    OBJECTIVES: To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city. METHODS: Citizens of Varese aged 6518 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1\u2009\ub5g/m3 increase in air pollutants from single- and bi-pollutant Poisson regression models. RESULTS: The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5\u2009\ub5g/m3. Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95%\u2009CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models. CONCLUSIONS: Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue

    Experimental and Numerical Study of Perforated Steel Plate Shear Panels

    Get PDF
    Thin perforated Steel Plate Shear (SPS) Walls are among the most common types of energy dissipating systems. The applied holes reduce the shear strength of the plate and allow to decrease the profile size of the members at the boundary of the panel when these systems are used in the typical design of structures. On the other hand, the different fracture locations of these panels are visible when considering the different perforation patterns. This paper reports on the results obtained from the experimental study under cyclic loading of the effect of different hole patterns on the seismic response of the systems and the location of the fracture. According to this, two perforated specimens by different patterns were considered. In addition, a plate without holes for a better comparison of the fracture location was chosen. The results showed that changing the pattern of the holes causes a change in the fracture location. Moreover, in perforated specimens, the amount of shear strength did not reduce suddenly after the fracture phenomenon. In the specimen which was perforated around the web plate, the pinching force was more than any other in the low cycle of the drifts. For this reason, the energy dissipation and initial stiffness were more than up to 3% drift. The experimental specimens were then simulated with a Finite Element (FE) method using the ABAQUS. Finally, a parametric FE analysis on different series of perforated panels, by changing the diameter of the holes and the plate thickness, has been carried out

    Colorimetric paper-based device for hazardous compounds detection in air and water: A proof of concept

    Get PDF
    In the last decades, the increase in global industrialization and the consequent technological progress have damaged the quality of the environment. As a consequence, the high levels of hazardous compounds such as metals and gases released in the atmosphere and water, have raised several concerns about the health of living organisms. Today, many analytical techniques are available with the aim to detect pollutant chemical species. However, a lot of them are not affordable due to the expensive instrumentations, time-consuming processes and high reagents volumes. Last but not least, their use is exclusive to trained operators. Contrarily, colorimetric sensing devices, including paper-based devices, are easy to use, providing results in a short time, without particular specializations to interpret the results. In addition, the colorimetric response is suitable for fast detection, especially in resource-limited environments or underdeveloped countries. Among different chemical species, transition and heavy metals such as iron Fe(II) and copper Cu(II) as well as volatile compounds, such as ammonia (NH3) and acetaldehyde (C2 H4 O) are widespread mainly in industrialized geographical areas. In this work, we developed a colorimetric paper-based analytical device (PAD) to detect different contaminants, including Fe2+ and Cu2+ ions in water, and NH3 and C2 H4 O in air at low concentrations. This study is a “proof of concept” of a new paper sensor in which the intensity of the colorimetric response is proportional to the concentration of a detected pollutant species. The sensor model could be further implemented in other technologies, such as drones, individual protection devices or wearable apparatus to monitor the exposure to toxic species in both indoor and outdoor environments

    Low Power Analog Design in Scaled Technologies

    Get PDF
    In this paper an overview on the main issues in analog IC design in scaled CMOS technology is presented. Decreasing the length of MOS channel and the gate oxide has led to undoubted advantages in terms of chip area, speed and power consumption (mainly exploited in the digital parts). Besides, some drawbacks are introduced in term of power leakage and reliability. Moreover, the scaled technology lower supply voltage requirement has led analog designers to find new circuital solution to guarantee the required performance
    • 

    corecore