201 research outputs found

    Deconfinement of Vortices with Continuously Variable Fractions of the Unit Flux Quanta in Two-Gap Superconductors

    Full text link
    We propose a new stage of confiment-decofinment transition, which can be observed in laboratory. In two-gap superconductors (SCs), two kinds of vortex exist and each of them carries a continuously variable fraction of the unit flux quanta Phi_0=h c / 2 e. The confined state of these two is a usual vortex and stable in the low temperature region of the system under a certain magnetic field above H_c1. We see an analogy to quarks in a charged pion. An entropy gain causes two fractional vortices to be deconfined above a certain temperature.Comment: 5 pages, 3 figures, to be published in Europhys. Let

    Control of Static Friction by Designing Grooves on Friction Surface

    Full text link
    This study numerically investigated the friction of viscoelastic objects with grooves. A 3D viscoelastic block with grooves on a rigid substrate is slowly pushed from the lateral side under uniform pressure on the top surface. The local friction force at the interface between the block and the substrate obeys Amontons' law. Numerical results obtained using the finite element method reveal that the static friction coefficient decreases with increasing groove width and depth. The propagation of the precursor slip is observed before bulk sliding. Furthermore, bulk sliding occurs when the area of slow precursor slip reaches a critical value, which decreases with increasing groove size. A theoretical analysis based on a simplified model reveals that the static friction coefficient is related to the critical area of the precursor, which is determined by the instability of the precursor. A scaling law for the critical area is theoretically predicted, and it indicates that the decrease in the effective viscosity due to the formation of the grooves leads to a decrease in the static friction coefficient. The validity of the theoretical prediction is numerically confirmed.Comment: 25 pages, 15 figures; 2 ancillary files (Supplementary Videos) attache

    Static Friction Coefficient Depends on the External Pressure and Block Shape due to Precursor Slip: Finite Element Simulation

    Full text link
    Amontons' law states that the maximum static friction force on a solid object is proportional to the loading force and is independent of the apparent contact area. This law indicates that the static friction coefficient does not depend on the external pressure or object shape. Here, we numerically investigate the sliding motion of a 3D viscoelastic block on a rigid substrate using the finite element method (FEM). The macroscopic static friction coefficient decreases with an increase in the external pressure, length, or width of the object, which contradicts Amontons' law. Precursor slip occurs in the 2D interface between the block and substrate before bulk sliding. The decrease in the macroscopic static friction coefficient is scaled by the critical area of the precursor slip before bulk sliding. A theoretical analysis of the simplified models reveals that bulk sliding results from the instability of the quasi-static precursor slip caused by velocity-weakening local friction. We also show that the critical slip area determines the macroscopic static friction coefficient, which explains the results of the FEM simulation.Comment: 11 pages, 6 figures; Supplementary Information 9 pages, 3 figures; 2 ancillary files (Supplementary Video) attache

    Control of Static Friction by Designing Grooves on Friction Surface

    Get PDF
    The version of record of this article, first published in Tribology Letters, is available online at Publisher’s website: https://doi.org/10.1007/s11249-023-01822-4Abstract: This study numerically investigated the friction of viscoelastic objects with grooves. A 3D viscoelastic block with grooves on a rigid substrate is slowly pushed from the lateral side under uniform pressure on the top surface. The local friction force at the interface between the block and the substrate obeys Amontons’ law. Numerical results obtained using the finite element method reveal that the static friction coefficient decreases with increasing groove width and depth. The propagation of the precursor slip is observed before bulk sliding. Furthermore, bulk sliding occurs when the area of slow precursor slip reaches a critical value, which decreases with increasing groove size. A theoretical analysis based on a simplified model reveals that the static friction coefficient is related to the critical area of the precursor, which is determined by the instability of the precursor. A scaling law for the critical area is theoretically predicted, and it indicates that the decrease in the effective viscosity due to the formation of the grooves leads to a decrease in the static friction coefficient. The validity of the theoretical prediction is numerically confirmed

    Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    Full text link
    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed.Comment: RevTex, 14 pages, 6 PostScript figures, to appear in Phys. Rev.

    Dynamical frictional phenomena in an incommensurate two-chain model

    Full text link
    Dynamical frictional phenomena are studied theoretically in a two-chain model with incommensurate structure. A perturbation theory with respect to the interchain interaction reveals the contributions from phonons excited in each chain to the kinetic frictional force. The validity of the theory is verified in the case of weak interaction by comparing with numerical simulation. The velocity and the interchain interaction dependences of the lattice structure are also investigated. It is shown that peculiar breaking of analyticity states appear, which is characteristic to the two-chain model. The range of the parameters in which the two-chain model is reduced to the Frenkel-Kontorova model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.
    • …
    corecore