905 research outputs found

    Towards finite field theory: the Taylor-Lagrange regularization scheme

    Full text link
    We recall a natural framework to deal with local field theory in which bare amplitudes are completely finite. We first present the main general properties of this scheme, the so-called Taylor-Lagrange regularization scheme. We then investigate the consequences of this scheme on the calculation of perturbative radiative corrections to the Higgs mass within the Standard Model. Important consequences for the renormalization group equations are finally discussed.Comment: 6 pages, 1 figure, contribution to the LC2012 Workshop, Krakow (Poland), July 201

    Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Get PDF
    Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used "three equation" ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated

    Non-perturbative renormalization in Light Front Dynamics with Fock space truncation

    Full text link
    Within the framework of the Covariant formulation of Light-Front Dynamics, we develop a general non-perturbative renormalization scheme based on the Fock decomposition of the state vector and its truncation. The explicit dependence of our formalism on the orientation of the light front is essential in order to analyze the structure of the counterterms and bare parameters needed to renormalize the theory. We present here a general strategy to determine the dependence of these quantities on the Fock sectors. We apply our formalism to QED for the two-body (one fermion and one boson) truncation and recover analytically, without any perturbative expansion, the renormalization of the electric charge according to the requirements of the Ward Identity.Comment: 7 pages, 6 figures, to appear in the proceedings of the Workshop on Light-Cone QCD and Nonperturbative Hadron Physics, Cairns, Australia, July 7-15, 200

    The pion wave function in covariant light-front dynamics

    Get PDF
    The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple one-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.Comment: 12 pages, 10 figure

    Dynamical relativistic corrections to the leptonic decay width of heavy quarkonia

    Get PDF
    We calculate the dynamical relativistic corrections, originating from radiative one-gluon-exchange, to the leptonic decay width of heavy quarkonia in the framework of a covariant formulation of Light-Front Dynamics. Comparison with the non-relativistic calculations of the leptonic decay width of J=1 charmonium and bottomonium S-ground states shows that relativistic corrections are large. Most importantly, the calculation of these dynamical relativistic corrections legitimate a perturbative expansion in αs\alpha_s, even in the charmonium sector. This is in contrast with the ongoing belief based on calculations in the non-relativistic limit. Consequences for the ability of several phenomenological potential to describe these decays are drawn.Comment: 17 pages, 7 figure

    Évolution, sĂ©lection, information : La question de la convergence

    Get PDF
    Qu'attend-on réellement en économie ou en sociologie d'un modÚle d'évolution par sélection ? C'est essentiellement un mode irremplaçable de présentation pour la convergence d'un processus pour lequel on ne dispose pas d'un schéma déterministe. Il y a là un paradoxe si l'on considÚre que Darwin a constamment critiqué tous les schémas de convergence relatifs au vivant et n'a jamais proposé d'en fournir un équivalent. Le secret de ce paradoxe pourrait bien résider dans un appoint trop peu reconnu, mais bien présent, du darwinisme : celui du premier schéma informationnel proposé pour la pensée des événements qui constituent une évolution.What is really the meaning of the manifold purposes the scientists ascribe to evolutionary patterns in social sciences ? Indeed the most plausible answer may be summarized by the idea of converging processes. If we consider the darwinian criticism about such converging processes, this answer is nevertheless paradoxical. We must therefore look for another point of view. I suggest that this informational conception of events is the actual implement we can find today in evolutionary patterns

    The fine-tuning problem revisited in the light of the Taylor-Lagrange renormalization scheme

    Get PDF
    We re-analyse the perturbative radiative corrections to the Higgs mass within the Standard Model in the light of the Taylor-Lagrange renormalization scheme. This scheme naturally leads to completely finite corrections, depending on an arbitrary dimensionless scale. This formulation avoids very large individual corrections to the Higgs mass. In other words, it is a confirmation that the so-called fine-tuning problem in the Standard Model is just an artefact of the regularization scheme and should not lead to any physical interpretation in terms of the energy scale at which new physics should show up, nor to the appearance of a new symmetry. We analyse the characteristic physical scales relevant for the description of these radiative corrections.Comment: 8 pages, 2 figure

    Aspects of fine-tuning of the Higgs mass within finite field theories

    Get PDF
    We reanalyze the perturbative radiative corrections to the Higgs mass within the Standard Model in the light of the Taylor-Lagrange renormalization scheme. This scheme naturally leads to completely finite corrections, depending on an arbitrary scale. The formulation avoids very large individual corrections to the Higgs mass. This illustrates the fact that the so-called fine-tuning problem in the Standard Model is just an artifact of the regularization scheme. It should therefore not lead to any physical interpretation in terms of the energy scale at which new physics should show up, nor in terms of a new symmetry. We analyze the intrinsic physical scales relevant for the description of these radiative corrections.Comment: 9 pages. arXiv admin note: substantial text overlap with arXiv:1011.174

    Taylor-Lagrange renormalization scheme. Application to light-front dynamics

    Full text link
    The recently proposed renormalization scheme based on the definition of field operators as operator valued distributions acting on specific test functions is shown to be very convenient in explicit calculations of physical observables within the framework of light-front dynamics. We first recall the main properties of this procedure based on identities relating the test functions to their Taylor remainder of any order expressed in terms of Lagrange's formulae, hence the name given to this scheme. We thus show how it naturally applies to the calculation of state vectors of physical systems in the covariant formulation of light-front dynamics. As an example, we consider the case of the Yukawa model in the simple two-body Fock state truncation.Comment: 18 pages, 6 figures, introduction changed, corrected typos, to be published in Physical Review
    • 

    corecore