3 research outputs found

    Atherosclerosis fate in the era of tailored functional foods: Evidence-based guidelines elicited from structure- and ligand-based approaches

    No full text
    Background: Atherosclerosis is the primary cause of cardiovascular diseases (CVDs), contributing to more than 33% of the annual deaths globally. Westernized dietary patterns, a high prevalence (50%) of overweight and obesity, and an increased incidence of glucose intolerance and type-2 diabetes are related to atherosclerosis. However, increased demand for functional foods has boosted the production of different foods to improve people’s life quality and decrease the CVDs’ risk. Nonetheless, functional foods targeting CVDs are scarce in the marketplace.  Scope and approach: To perform a multidisciplinary and cross-sectoral approach by linking atherosclerosis bio-markers, potential bioactive compounds (e.g., phenolics), and food technology, besides scientific limitations, we propose a practical step-by-step guide to designing functional foods. First, a comprehensive and up-to-date overview of atherosclerosis is provided, focusing on the inflammation markers to counteract its onset and proression. Then, a structure-based–(SBDD) or ligand-based drug design (LBDD) approach is presented, and illustrated by the incorporation of vescalagin, a phenolic compound from jaboticaba seed, into a functional food to mitigate atherosclerosis. Key findings and conclusions: Tailored functional foods added with phenolic compounds can be designed through computational approaches predicting their bioactivity. Together with chemical analyses, mathematical models can explore a vast array of molecular mechanisms, allowing the discovery of novel bioactive compound sources. Altogether, food science/technology, nutrition, and structure- and ligand-based approaches should be combined to support the design of tailor-made functional foods/nutraceuticals to contribute to public health interventions related to atherosclerosis and other cardiometabolic diseases</p

    Synthetic Curcumin Analogues Present Antiflavivirus Activity In Vitro with Potential Multiflavivirus Activity from a Thiazolylhydrazone Moiety

    No full text
    Arboviral diseases caused by flaviviruses, such as dengue, are a continuing threat and major concern worldwide, with over three billion people estimated to be living with the risk of dengue virus (DENV) infections. There are thus far no antiviral drugs available for treatment, and limited or no vaccines are available. Curcumin and seven synthetic analogues were evaluated for their antiviral activity against dengue virus serotype 2, yellow fever virus and Zika virus, as well as for their cytotoxicity in Vero cells, both by employing MTT assays. Compounds 6 and 7, which present a thiazolylhydrazone moiety, showed moderate activity against all three flaviviruses, with selectivity index (SI) values up to 4.45. In addition, the envelope protein (E) was predicted as the potential target inhibited by both compounds, supported by molecular docking and dynamics simulation analysis. We hope that this data can contribute to the development of new curcumin antiviral analogues in the near future and can help in the search for new promising compounds as potential therapeutic agents to treat flaviviruses infections
    corecore