6 research outputs found

    An improved building load forecasting method using a combined least square support vector machine and modified artificial bee colony

    Get PDF
    This paper presents an improved building load forecasting method using a combined Least Square Support Vector Machine and modified Artificial Bee Colony. The main contribution of the proposed method is the improvement in the exploitation capability of the standard Artificial Bee Colony, in which a different probability selection has been introduced. This was achieved by changing the standard probability selection with the clonal selection algorithm. The results from two other methods were compared with the results from the proposed method to validate the performance of the proposed forecasting method. The accuracy of the proposed method was evaluated using the Mean Absolute Error, Mean Absolute Percentage Error and Root Mean Square Error. It was found that the proposed method had improved the accuracy by more than 50 % compared to the other methods. The results of the study showed that the proposed method has great potential to be used as an accurate forecasting method

    Enhancing the Performance of Building Load Forecasting Using Hybrid of GLSSVM – ABC Model

    No full text
    In conducting load forecasting, the accuracy of forecasting is an important aspect in planning and managing electricity. Thus, a new hybrid model is presented in this paper, which combines the Group Method of Data Handling, Least Square Support Vector Machine and Artificial Bee Colony (GLSSVM- ABC) for building load forecasting. Its performance accuracy has been compared with other methods by using the Mean Absolute Percentage Error (MAPE) and Root Means Square Error (RMSE). It was found that the proposed method has resulted in better performance accuracy in terms of both MAPE and RMSE. The MAPE analysis showed an increase in performance accuracy of more than 7 percent when compared to other methods. The RMSE analysis showed an increase in performance accuracy of more than 5 percent when compared to other methods. The results in this study showed that the proposed method is proven to be effective and has great potential for accurate building load forecasting

    Enhancing the Performance of Building Load Forecasting Using Hybrid of GLSSVM – ABC Model

    No full text
    In conducting load forecasting, the accuracy of forecasting is an important aspect in planning and managing electricity. Thus, a new hybrid model is presented in this paper, which combines the Group Method of Data Handling, Least Square Support Vector Machine and Artificial Bee Colony (GLSSVM- ABC) for building load forecasting. Its performance accuracy has been compared with other methods by using the Mean Absolute Percentage Error (MAPE) and Root Means Square Error (RMSE). It was found that the proposed method has resulted in better performance accuracy in terms of both MAPE and RMSE. The MAPE analysis showed an increase in performance accuracy of more than 7 percent when compared to other methods. The RMSE analysis showed an increase in performance accuracy of more than 5 percent when compared to other methods. The results in this study showed that the proposed method is proven to be effective and has great potential for accurate building load forecasting

    Enhancing the Performance of Building Load Forecasting Using Hybrid of GLSSVM – ABC Model

    No full text
    In conducting load forecasting, the accuracy of forecasting is an important aspect in planning and managing electricity. Thus, a new hybrid model is presented in this paper, which combines the Group Method of Data Handling, Least Square Support Vector Machine and Artificial Bee Colony (GLSSVM- ABC) for building load forecasting. Its performance accuracy has been compared with other methods by using the Mean Absolute Percentage Error (MAPE) and Root Means Square Error (RMSE). It was found that the proposed method has resulted in better performance accuracy in terms of both MAPE and RMSE. The MAPE analysis showed an increase in performance accuracy of more than 7 percent when compared to other methods. The RMSE analysis showed an increase in performance accuracy of more than 5 percent when compared to other methods. The results in this study showed that the proposed method is proven to be effective and has great potential for accurate building load forecasting

    Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: a review

    No full text
    It is important for building owners and operators to manage the electrical energy consumption of their buildings. As electrical energy is the major form of energy consumed in a commercial building, the ability to forecast electrical energy consumption in a building will bring great benefits to the building owners and operators. This paper provides a review of the building electrical energy consumption forecasting methods which include the conventional and artificial intelligence (AI) methods. The significant goal of this study is to review, recognize, and analyse the performance of both methods for forecasting of electrical energy consumption. Compared to using a single method of forecasting, the hybrid of two forecasting methods can possibly be applied for more precise results. Regarding this potential, the swarm intelligence (SI) method has been reviewed to be hybridized with AI. Published literature presented in this paper shows that, the hybrid of SVM and SI methods has indeed presented superior performance for forecasting building electrical energy consumption
    corecore