141 research outputs found

    Seeking critical nodes in digraphs

    Get PDF
    The Critical Node Detection Problem (CNDP) consists in finding the set of nodes, defined critical, whose removal maximally degrades the graph. In this work we focus on finding the set of critical nodes whose removal minimizes the pairwise connectivity of a direct graph (digraph). Such problem has been proved to be NP-hard, thus we need efficient heuristics to detect critical nodes in real-world applications. We aim at understanding which is the best heuristic we can apply to identify critical nodes in practice, i.e., taking into account time constrains and real-world networks. We present an in-depth analysis of several heuristics we ran on both real-world and on synthetic graphs. We define and evaluate two different strategies for each heuristic: standard and iterative. Our main findings show that an algorithm recently proposed to solve the CNDP and that can be used as heuristic for the general case provides the best results in real-world graphs, and it is also the fastest. However, there are few exceptions that are thoroughly analyzed and discussed. We show that among the heuristics we analyzed, few of them cannot be applied to very large graphs, when the iterative strategy is used, due to their time complexity. Finally, we suggest possible directions to further improve the heuristic providing the best results

    Reduced Systolic Myocardial Function in Children with Chronic Renal Insufficiency

    Get PDF

    High current and low q95 scenario studies for FAST in the view of ITER and DEMO

    Get PDF
    The Fusion Advanced Study Torus (FAST) has been proposed as a possible European satellite, in view of ITER and DEMO, in order to: a) explore plasma wall interaction in reactor relevant conditions b) test tools and scenarios for safe and reliable tokamak operation up to the border of stability c) address fusion plasmas with a significant population of fast particles. A new FAST scenario has been designed focusing on low-q operation, at plasma current IP=10 MA, toroidal field BT=8.5T, with a q95=2.3 that would correspond to IP=20 MA in ITER. The flat-top of the discharge can last a couple of seconds (i.e. half the diffusive resistive time and twice the energy confinement time), and is limited by the heating of the toroidal field coils. A preliminary evaluation of the end-of-pulse temperatures and of the electromagnetic forces acting on the central solenoid pack and poloidal field coils has been performed. Moreover, a VDE plasma disruption has been simulated and the maximum total vertical force applied on the vacuum vessel has been estimated

    Langmuir probe electronics upgrade on the tokamak a configuration variable

    Get PDF
    A detailed description of the Langmuir probe electronics upgrade for TCV (Tokamak a Configuration Variable) is presented. The number of amplifiers and corresponding electronics has been increased from 48 to 120 in order to simultaneously connect all of the 114 Langmuir probes currently mounted in the TCV divertor and main-wall tiles. Another set of 108 amplifiers is ready to be installed in order to connect 80 new probes, built in the frame of the TCV divertor upgrade. Technical details of the amplifier circuitry are discussed as well as improvements over the first generation of amplifiers developed at SPC (formerly CRPP) in 1993/1994 and over the second generation developed in 2012/2013. While the new amplifiers have been operated successfully for over a year, it was found that their silicon power transistors can be damaged during some off-normal plasma events. Possible solutions are discussed. (C) 2019 Author(s)

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)0.95{{H}_{\text{H}\left(98,\text{y}2\right)}}\approx 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Technology and employment. Twelve stylized facts for the digital age

    Get PDF
    Twelve stylized facts on the relationship between technology and employment are proposed in this paper as a summary of current trends, conceptual issues, methodological approaches and research results. They include the following: 1. Technology is shaped by social relations; 2. Technology saves human labour; technological unemployment is a serious concern; 3. In the digital age the nature and boundaries of work are changing; 4. Different technological strategies have contrasting employment effects; 5. Industries differ in their employment dynamics and role of technology; 6. We can see the employment impact of technology at the firm, industry and macroeconomic levels; 7. Technological change is a disequilibrium process; demand and structural change matter; 8. Business cycles affect technological change and its employment impact; 9. The impact of technology is different across occupations and skills; 10. Labour market conditions are relevant, but employment outcomes are not determined in labour markets alone; 11. In emerging countries employment outcomes are jointly affected by technology and catching up; 12. Technology is an engine of inequality; profits benefit more than wages, wage disparities increase. They have important policy implications in several areas of public action
    corecore