808 research outputs found

    Calamintha incana (Sm.) Helder: A New Phytoextract with In Vitro Antioxidant and Antidiabetic Action

    Get PDF
    This study aimed to assess the antioxidant and antidiabetic properties of ethanolic phytoextracts of Calamintha incana (Sm.) Helder leaves. Initially, the chemical characterization of the phytocomplex was performed using high-performance liquid chromatography (HPLC)/mass spectrometry (MS). The cytotoxicity of the ethanolic extract was assessed using an MTT assay in HepG2 cells. Subsequently, antioxidant activity was evaluated using a DPPH test. Finally, enzymatic tests with alpha-amylase, alpha-glucosidase, pancreatic lipase, and dipeptidyl peptidase IV (DPP-IV) were performed to evaluate their effects on glucose metabolism. The chemical composition of the extract is p-linolenic acid (13.2%), myristic acid (12.1%), and p-cymene (10.5%). The extract demonstrated low toxicity, with none of the tested concentrations inducing 50% cell death. Furthermore, the ethanolic extract revealed potent antioxidant activity using DPPH (IC50 was 35.9 +/- 0.7 mu g/mL) and reducing power capacity (IC50 was 90.3 +/- 0.8 mu g/mL). Regarding the antidiabetic activity, the extract caused a significant inhibition of alpha-amylase, alpha-glucosidase (IC50 46.3 +/- 0.2, 56.8 +/- 0.1 mu g/mL, respectively), weak inhibition of pancreatic lipase and no notable inhibition of dipeptidyl peptidase IV. In conclusion, C. incana has antioxidant and antidiabetic properties and appears to exert insulin-independent hypoglycemic action

    Effect of Light, Temperature, Salinity, and Halopriming on Seed Germination and Seedling Growth of Hibiscus sabdariffa under Salinity Stress

    Get PDF
    Salt stress is a serious and current global problem for crops. Due to climate change, the soil today has higher salinity levels than in past decades. Identifying temperature, light, and salinity that allow plants to germinate and grow is an ambitious challenge for the future. Hibiscus sabdariffa (H. sabdariffa) is a plant that undergoes abiotic stress during all stages of growth. The aim of this work was to identify the best conditions in terms of light, temperature, and salinity during the germination and growth phases of H. sabdariffa. To improve the germination of H. sabdariffa seed, the effects of abiotic stress were investigated in three experiments. In the first experiment, the factors included light at two levels (light and dark cycles) and temperature at eight levels (5, 10, 15, 20, 25, 30, 35, and 40 °C). In the second experiment, the effect of salinity was examined at seven levels (0, 30, 60, 90, 120, 150, and 180 mM NaCl). In the third experiment, the factors consisted of seed halopriming at two levels (0 and 180 mM NaCl for 24 h) and salinity at seven levels (0, 30, 60, 90, 120, 150, and 180 mM NaCl). The highest germination rate (GR), seedling dry weight, and uniformity of germination were obtained at 30 °C in dark conditions, as reported by one-way Anova analysis. Germination was restricted by temperatures lower and higher than 5 and 30 °C, respectively. By increasing the salinity, all the germination characteristics were decreased, but these effects were less pronounced by halopriming. The most suitable planting date was in the spring, when the temperature was in the range of 25–35 °C. During the germination stage, Hibiscus tea is sensitive to low salinity soils. Halopriming can be performed for enhancing GR and emergence percentage

    Stationary Wavelet Processing and Data Imputing in Myoelectric Pattern Recognition on a Low-Cost Embedded System

    Get PDF
    Pattern recognition-based decoding of surface electromyography allows for intuitive and flexible control of prostheses but comes at the cost of sensitivity to in-band noise and sensor faults. System robustness can be improved with wavelet-based signal processing and data imputing, but no attempt has been made to implement such algorithms on real-time, portable systems. The aim of this work was to investigate the feasibility of low-latency, wavelet-based processing and data imputing on an embedded device capable of controlling upper-arm prostheses. Nine able-bodied subjects performed Motion Tests while inducing transient disturbances. Additional investigation was performed on pre-recorded Motion Tests from 15 able-bodied subjects with simulated disturbances. Results from real-time tests were inconclusive, likely due to the low number of disturbance episodes, but simulated tests showed significant improvements in most metrics for both algorithms. However, both algorithms also showed reduced responsiveness during disturbance episodes. These results suggest wavelet-based processing and data imputing can be implemented in portable, real-time systems to potentially improve robustness to signal distortion in prosthetic devices with the caveat of reduced responsiveness for the typically short duration of signal disturbances. The trade-off between large-scale signal corruption robustness and system responsiveness warrants further studies in daily life activities

    Isotopic Composition of Fragments in Nuclear Multifragmentation

    Full text link
    The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measured. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.Comment: 10 pages. 4 Postscript figures. Submitted to Physical Review C, Rapid Communicatio

    Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease

    Get PDF
    In this study, phytochemicals extracted from three different Achillea genera were identified and analyzed to be screened for their interactions with the SARS-CoV-2 main protease. In particular, the antiviral potential of these natural products against the SARS-CoV-2 main protease was investigated, as was their effectiveness against the SARS-CoV-1 main protease as a standard (due to its high similarity with SARS-CoV-2). These enzymes play key roles in the proliferation of viral strains in the human cytological domain. GC-MS analysis was used to identify the essential oils of the Achillea species. Chemi-informatics tools, such as AutoDock 4.2.6, SwissADME, ProTox-II, and LigPlot, were used to investigate the action of the pharmacoactive compounds against the main proteases of SARS-CoV-1 and SARS-CoV-2. Based on the binding energies of kessanyl acetate, chavibetol (m-eugenol), farnesol, and 7-epi-beta-eudesmol were localized at the active site of the coronaviruses. Furthermore, these molecules, through hydrogen bonding with the amino acid residues of the active sites of viral proteins, were found to block the progression of SARS-CoV-2. Screening and computer analysis provided us with the opportunity to consider these molecules for further preclinical studies. Furthermore, considering their low toxicity, the data may pave the way for new in vitro and in vivo research on these natural inhibitors of the main SARS-CoV-2 protease

    Nanoparticles Based-Plant Protein Containing Rosmarinus officinalis Essential Oil; Fabrication, Characterization, and Evaluation

    Get PDF
    The toxicity risks, instability of essential oil, and complex composition are principal obstacles to using essential plant oil for clinical applications. Solving stability-related problems, providing targeted drug delivery, and decreasing plant essential oil toxicity, encapsulation can be used successfully. Rosemary (Rosmarinus officinalis) is a perennial plant of the Lamiaceae family with various healing properties. However, the rosemary essential oil, as volatile oil, is fast evaporated, which limits its applications. This study’s goal is to boost the prevent evaporation and bioactivity of rosemary essential oil by developing zein-NPs as a promising NDS (nano-drug-delivery system) and assessing the effect of NPs on the rosemary essential oil efficacy. Scanning electron microscopy (SEM) showed NPs sizes between 70–200 nm. With dynamic light scattering analysis (DLS), the average size of zein nanoparticle-containing rosemary essential oil (NPZLA) was obtained at ca. 154.5 nm. The entrapment efficiency (EE) on rosemary essential oil was ca. 71% inside the zein NPs. The in vitro release suggests that the polymeric barrier can control the rosemary essential oil release. Zein-NPs can be potentially used as NC (nanocarrier) for enhancing the evaporation inhibitor of ether oil of rosemary essential oil to enhance its bioavailability and performance further. It can be concluded that rosemary plant can be used as the core inside the nanoparticle by biological production method due to its medicinal properties and other properties. Based on the stated content, it is clear that in the future, by conducting more extensive research, the necessary platform can be provided for the use of this medicinal plant as much as possible in the pharmaceutical industry

    Explorations of Autonomous Prosthetic Grasping Via Proximity Vision and Deep Learning

    Get PDF
    The traumatic loss of a hand is usually followed by significant psychological, functional and rehabilitation challenges. Even though much progress has been reached in the past decades, the prosthetic challenge of restoring the human hand functionality is still far from being achieved. Autonomous prosthetic hands showed promising results and wide potential benefit, a benefit that must be still explored and deployed. Here, we hypothesized that a combination of a radar sensor and a low-resolution time-of-flight camera can be sufficient for object recognition in both static and dynamic scenarios. To test this hypothesis, we analyzed via deep learning algorithms HANDdata, a human-object interaction dataset with particular focus on reach-to-grasp actions. Inference testing was also performed on unseen data purposely acquired. The analyses reported here, broken down to gradually increasing levels of complexity, showed a great potential of using such proximity sensors as alternative or complementary solution to standard camera-based systems. In particular, integrated and low-power radar can be a potential key technology for next generation intelligent and autonomous prostheses

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Molecular and genetic factors involved in olfactory and gustatory deficits and associations with microbiota in parkinson’s disease

    Get PDF
    Deficits in olfaction and taste are among the most frequent non-motor manifestations in Parkinson’s disease (PD) that start very early and frequently precede the PD motor symptoms. The limited data available suggest that the basis of the olfactory and gustatory dysfunction related to PD are likely multifactorial and may include the same determinants responsible for other non-motor symptoms of PD. This review describes the most relevant molecular and genetic factors involved in the PD-related smell and taste impairments, and their associations with the microbiota, which also may represent risk factors associated with the disease

    The Mineral Biochar Alters the Biochemical and Microbial Properties of the Soil and the Grain Yield of Hordeum vulgare L. under Drought Stress

    Get PDF
    Biochar improves soil physical, biochemical, and microbial properties, leading to the amelioration of soil fertility, which, in turn, results in better growth and yield in crop plants. The current study aimed to evaluate whether using different levels of biochar can enhance soil characteristics and plant attributes. Accordingly, an experimental study was conducted in 2022 using a randomized complete block design with four replications (n = 4) in the experimental glasshouse of the University of Zanjan, in which two regimes of irrigation (D0, full irrigation as the control; D1, water scarcity was applied immediately after the flowering stage for two weeks) and four levels of natural mineral biochar (0% as the control treatment, 0.25, 0.5, and 1% of soil weight) were applied. The results indicated that drought substantially decreased the organic carbon content of the soil and the grain yield while increasing the available phosphorous, soil carbohydrate content, and microbial biomass of the soil. Biochar could considerably alter the means of the studied soil quality parameters and the barley grain yield. Adding biochar could be considered a valid strategy to increase the resistance of plants to drought
    • …
    corecore