432 research outputs found

    Quantum-Information Theoretic Properties of Nuclei and Trapped Bose Gases

    Full text link
    Fermionic (atomic nuclei) and bosonic (correlated atoms in a trap) systems are studied from an information-theoretic point of view. Shannon and Onicescu information measures are calculated for the above systems comparing correlated and uncorrelated cases as functions of the strength of short range correlations. One-body and two-body density and momentum distributions are employed. Thus the effect of short-range correlations on the information content is evaluated. The magnitude of distinguishability of the correlated and uncorrelated densities is also discussed employing suitable measures of distance of states i.e. the well known Kullback-Leibler relative entropy and the recently proposed Jensen-Shannon divergence entropy. It is seen that the same information-theoretic properties hold for quantum many-body systems obeying different statistics (fermions and bosons).Comment: 24 pages, 9 figures, 1 tabl

    Preferential attachment during the evolution of a potential energy landscape

    Full text link
    It has previously been shown that the network of connected minima on a potential energy landscape is scale-free, and that this reflects a power-law distribution for the areas of the basins of attraction surrounding the minima. Here, we set out to understand more about the physical origins of these puzzling properties by examining how the potential energy landscape of a 13-atom cluster evolves with the range of the potential. In particular, on decreasing the range of the potential the number of stationary points increases and thus the landscape becomes rougher and the network gets larger. Thus, we are able to follow the evolution of the potential energy landscape from one with just a single minimum to a complex landscape with many minima and a scale-free pattern of connections. We find that during this growth process, new edges in the network of connected minima preferentially attach to more highly-connected minima, thus leading to the scale-free character. Furthermore, minima that appear when the range of the potential is shorter and the network is larger have smaller basins of attraction. As there are many of these smaller basins because the network grows exponentially, the observed growth process thus also gives rise to a power-law distribution for the hyperareas of the basins.Comment: 10 pages, 10 figure
    corecore