62 research outputs found

    Temporal switching and cell-to-cell variability in Ca2+ release activity in mammalian cells

    Get PDF
    Genetically identical cells in a uniform external environment can exhibit different phenotypes, which are often masked by conventional measurements that average over cell populations. Although most studies on this topic have used microorganisms, differentiated mammalian cells have rarely been explored. Here, we report that only approximately 40% of clonal human embryonic kidney 293 cells respond with an intracellular Ca2+ increase when ryanodine receptor Ca2+ release channels in the endoplasmic reticulum are maximally activated by caffeine. On the other hand, the expression levels of ryanodine receptor showed a unimodal distribution. We showed that the difference in the caffeine sensitivity depends on a critical balance between Ca2+ release and Ca2+ uptake activities, which is amplified by the regenerative nature of the Ca2+ release mechanism. Furthermore, individual cells switched between the caffeine-sensitive and caffeine-insensitive states with an average transition time of approximately 65 h, suggestive of temporal fluctuation in endogenous protein expression levels associated with caffeine response. These results suggest the significance of regenerative mechanisms that amplify protein expression noise and induce cell-to-cell phenotypic variation in mammalian cells

    Transient Receptor Potential 1 Regulates Capacitative Ca2+ Entry and Ca2+ Release from Endoplasmic Reticulum in B Lymphocytes〉

    Get PDF
    Capacitative Ca2+ entry (CCE) activated by release/depletion of Ca2+ from internal stores represents a major Ca2+ influx mechanism in lymphocytes and other nonexcitable cells. Despite the importance of CCE in antigen-mediated lymphocyte activation, molecular components constituting this mechanism remain elusive. Here we demonstrate that genetic disruption of transient receptor potential (TRP)1 significantly attenuates both Ca2+ release-activated Ca2+ currents and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from endoplasmic reticulum (ER) in DT40 B cells. As a consequence, B cell antigen receptor–mediated Ca2+ oscillations and NF-AT activation are reduced in TRP1-deficient cells. Thus, our results suggest that CCE channels, whose formation involves TRP1 as an important component, modulate IP3 receptor function, thereby enhancing functional coupling between the ER and plasma membrane in transduction of intracellular Ca2+ signaling in B lymphocytes

    Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Get PDF
    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1

    Family affairs of intracellular Ca2+-release channels

    No full text

    Ca(2+) shuttling between endoplasmic reticulum and mitochondria underlying Ca(2+) oscillations

    No full text
    Although many cell functions are regulated by Ca(2+) oscillations induced by a cyclic release of Ca(2+) from intracellular Ca(2+) stores, the pacemaker mechanism of Ca(2+) oscillations remains to be explained. Using green fluorescent protein-based Ca(2+) indicators that are targeted to intracellular Ca(2+) stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca(2+) shuttles between the ER and mitochondria in phase with Ca(2+) oscillations. Following agonist stimulation, Ca(2+) release from the ER generated the first Ca(2+) oscillation and loaded mitochondria with Ca(2+). Before the second Ca(2+) oscillation, Ca(2+) release from the mitochondria by means of the Na(+)/Ca(2+) exchanger caused a gradual increase in cytoplasmic Ca(2+) concentration, inducing a regenerative ER Ca(2+) release, which generated the peak of Ca(2+) oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca(2+) was depleted. Thus, Ca(2+) shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca(2+) oscillations

    The Occurrence of a Ca 2+

    No full text
    corecore