31,063 research outputs found

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of ∼\sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed

    New Numerical Results Indicate a Half-Filling SU(4) Kondo State in Carbon Nanotubes

    Full text link
    Numerical calculations simulate transport experiments in carbon nanotube quantum dots (P. Jarillo-Herrero et al., Nature 434, 484 (2005)), where a strongly enhanced Kondo temperature T_K ~ 8K was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell. Our results clearly suggest that the Kondo conductance measured for an adjacent shell with T_K ~ 16K, interpreted as a singlet-triplet Kondo effect, can be associated instead to an SU(4) Kondo effect at half-filling. Besides presenting spin-charge Kondo screening similar to the quarter-filling SU(4), the half-filling SU(4) has been recently associated to very rich physical behavior, including a non-Fermi-liquid state (M. R. Galpin et al., Phys. Rev. Lett. 94, 186406 (2005)).Comment: 7 pages, 7 figure
    • …
    corecore