12,240 research outputs found
The solution space of metabolic networks: producibility, robustness and fluctuations
Flux analysis is a class of constraint-based approaches to the study of
biochemical reaction networks: they are based on determining the reaction flux
configurations compatible with given stoichiometric and thermodynamic
constraints. One of its main areas of application is the study of cellular
metabolic networks. We briefly and selectively review the main approaches to
this problem and then, building on recent work, we provide a characterization
of the productive capabilities of the metabolic network of the bacterium E.coli
in a specified growth medium in terms of the producible biochemical species.
While a robust and physiologically meaningful production profile clearly
emerges (including biomass components, biomass products, waste etc.), the
underlying constraints still allow for significant fluctuations even in key
metabolites like ATP and, as a consequence, apparently lay the ground for very
different growth scenarios.Comment: 10 pages, prepared for the Proceedings of the International Workshop
on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japa
Theory of controlled quantum dynamics
We introduce a general formalism, based on the stochastic formulation of
quantum mechanics, to obtain localized quasi-classical wave packets as
dynamically controlled systems, for arbitrary anharmonic potentials. The
control is in general linear, and it amounts to introduce additional quadratic
and linear time-dependent terms to the given potential. In this way one can
construct for general systems either coherent packets moving with constant
dispersion, or dynamically squeezed packets whose spreading remains bounded for
all times. In the standard operatorial framework our scheme corresponds to a
suitable generalization of the displacement and scaling operators that generate
the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math.
Gen., April 199
Transient fluctuation relations for time-dependent particle transport
We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time reversed evolutions of physical observables. In many "mesoscopic" transport processes, the effective many-particle dynamics is dominantly classical, while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work
MAGDA: A Mobile Agent based Grid Architecture
Mobile agents mean both a technology
and a programming paradigm. They allow for a
flexible approach which can alleviate a number
of issues present in distributed and Grid-based
systems, by means of features such as migration,
cloning, messaging and other provided mechanisms.
In this paper we describe an architecture
(MAGDA – Mobile Agent based Grid Architecture)
we have designed and we are currently
developing to support programming and execution
of mobile agent based application upon Grid
systems
Dynamics of a particle confined in a two-dimensional dilating and deforming domain
Some recent results concerning a particle confined in a one-dimensional box
with moving walls are briefly reviewed. By exploiting the same techniques used
for the 1D problem, we investigate the behavior of a quantum particle confined
in a two-dimensional box (a 2D billiard) whose walls are moving, by recasting
the relevant mathematical problem with moving boundaries in the form of a
problem with fixed boundaries and time-dependent Hamiltonian. Changes of the
shape of the box are shown to be important, as it clearly emerges from the
comparison between the "pantographic", case (same shape of the box through all
the process) and the case with deformation.Comment: 13 pages, 2 figure
The Wide Field Imaging Interferometry Testbed
We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in
support of design studies for NASA's future space interferometry missions, in
particular the SPIRIT and SPECS far-infrared/submillimeter interferometers.
WIIT operates at optical wavelengths and uses Michelson beam combination to
achieve both wide-field imaging and high-resolution spectroscopy. It will be
used chiefly to test the feasibility of using a large-format detector array at
the image plane of the sky to obtain wide-field interferometry images through
mosaicing techniques. In this setup each detector pixel records interferograms
corresponding to averaging a particular pointing range on the sky as the
optical path length is scanned and as the baseline separation and orientation
is varied. The final image is constructed through spatial and spectral Fourier
transforms of the recorded interferograms for each pixel, followed by a
mosaic/joint-deconvolution procedure of all the pixels. In this manner the
image within the pointing range of each detector pixel is further resolved to
an angular resolution corresponding to the maximum baseline separation for
fringe measurements.
We present the motivation for building the testbed, show the optical,
mechanical, control, and data system design, and describe the image processing
requirements and algorithms. WIIT is presently under construction at NASA's
Goddard Space Flight Center.Comment: 7 pages, 3 figures, IEEE Aerospace Conference 200
Multi-market minority game: breaking the symmetry of choice
Generalization of the minority game to more than one market is considered. At
each time step every agent chooses one of its strategies and acts on the market
related to this strategy. If the payoff function allows for strong fluctuation
of utility then market occupancies become inhomogeneous with preference given
to this market where the fluctuation occured first. There exists a critical
size of agent population above which agents on bigger market behave
collectively. In this regime there always exists a history of decisions for
which all agents on a bigger market react identically.Comment: 15 pages, 12 figures, Accepted to 'Advances in Complex Systems
The tris formulation of Fluorouracil is more cardiotoxic than the sodium-salt formulations
The cardiotoxicity of 5-fluorouracil (FU) was attributed to degradation compounds present in the injected vials, fluoroacetaldehyde (Facet) and fluoromalonaldehydic acid (FMald). FU-NaOH vials were much less cardiotoxic than FU-Tris vials on the isolated perfused rabbit heart model since Facet and FMald are stored in stable depot forms in FU-Tris vials whereas, in FU-NaOH vials, they are extensively transformed. Cardiotoxic fluoroacetate (FAG), coming from Facet metabolization, was found in urine of patients, with a ratio FAC /FU catabolites 10-30 fold lower in patients treated with FU-NaOH than in those treated with FU-Tris
Microtremor response of a mass movement in Federal District of Brazil
The present study provides a brief description of the ambient noise recorded at a slow moving mass movement in RibeirĂŁo Contagem Basin. The area is an interesting natural laboratory as river detachment processes in a number of different stages can be identified and are easily accessible. We investigate the site dynamic characteristics of the study area by recording ambient noise time-series at nine points, using portable nine three-component short period seismometers. The time-series are processed to give both horizontal to vertical spectral ratio (HVSR) curves as well as time-frequency plots of noise power spectral density (SPD). The HVSR curves illustrate and quantify aspects of site resonance effects due to underlying geology. Probability density function (PDF) shows that noise level lies well between new high noise model (NHNM) and new lower noise model (NLNM) and their probabilities are higher above 2 Hz. HVSR curves present a uniform lithologically controlled peak at 2 Hz. Directional properties of the wavefield are determined by beamforming method. The f-k analysis results in the E-W component show that at 5 Hz phase velocities are close to 1700 m/s while at 10 Hz dropped to 250 m/s. We observed that between 5 and 16 Hz the incoming wavefield arrive from 260 degrees. Further studies will apply a detailed noise analysis for the understanding of dynamics of the mass movement, which is triggered by the river erosion
- …