14,326 research outputs found

    Muon capture in the front end of the IDS neutrino factory

    Full text link
    We discuss the design of the muon capture front end of the neutrino factory International Design Study. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high energy where their decays provide neutrino beams. For the International Design Study (IDS), a baseline design must be developed and optimized for an engineering and cost study. We present a baseline design that can be used to establish the scope of a future neutrino Factory facility.Comment: 3 pp. 1st International Particle Accelerator Conference: IPAC'10, 23-28 May 2010: Kyoto, Japa

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    Full text link
    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement.Comment: 13 pages and 3 figure

    Generation of polarization entangled photon pairs by a single crystal interferometric source pumped by femtosecond laser pulses

    Get PDF
    Photon pairs, highly entangled in polarization have been generated under femtosecond laser pulse excitation by a type I crystal source, operating in a single arm interferometric scheme. The relevant effects of temporal walk-off existing in these conditions between the ordinary and extraordinary photons were experimentally investigated. By introducing a suitable temporal compensation between the two orthogonal polarization components highly entangled pulsed states were obtained

    Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly

    Full text link
    We study the impact of the effect of multinucleon interactions in the reconstruction of the neutrino energy on the fit of the MiniBooNE data in terms of neutrino oscillations. We obtain some improvement of the fit of the MiniBooNE low-energy excess in the framework of two-neutrino oscillations and a shift of the allowed region in the sin⁥22ϑ\sin^2 2\vartheta--Δm2\Delta{m}^2 plane towards smaller values of sin⁥22ϑ\sin^2 2\vartheta and larger values of Δm2\Delta{m}^2. However this effect is not enough to solve the problem of the appearance-disappearance tension in the global fit of short-baseline neutrino oscillation data.Comment: 14 pages; to be published in PR

    Realization of Universal Optimal Quantum Machines by Projective Operators and Stochastic Maps

    Full text link
    Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal anti-unitary map. In addition, the contextual realization of the N ->M cloning map and of the teleportation of the N->(M-N) universal NOT gate is analyzed by a novel and very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1->2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits.Comment: 11 pages, 7 figure

    Consensus and disagreement in small committees

    Get PDF
    • 

    corecore