42 research outputs found
Explicit Determination of Pinned-Pinned Beams with a Finite Number of Given Buckling Loads
We present an analytical procedure for the exact, explicit construction of Euler-Bernoulli beams with given values of the first N buckling loads. The result is valid for pinned-pinned (P-P) end conditions and for beams with regular bending stiffness. The analysis is based on a reduction of the buckling problem to an eigenvalue problem for a vibrating string, and uses recent results on the exact construction of Sturm-Liouville operators with prescribed natural frequencies
Whispering gallery quantum well exciton polaritons in an Indium Gallium Arsenide microdisk cavity
Despite appealing high-symmetry properties that enable high quality factor
and strong confinement, whispering gallery modes of spherical and circular
resonators have been absent from the field of quantum-well exciton polaritons.
Here we observe whispering gallery exciton polaritons in a Gallium Arsenide
microdisk cavity filled with Indium Gallium Arsenide quantum wells, the testbed
materials of polaritonics. Strong coupling is evidenced in photoluminescence
and resonant spectroscopy, accessed through concomitant confocal microscopy and
near-field optical techniques. Excitonic and optical resonances are tuned by
varying temperature and disk radius, revealing Rabi splittings between 5 and 10
meV. A dedicated analytical quantum model for such circular polaritons is
developed, which reproduces the measured values. At high power, lasing is
observed and accompanied by a blueshift of the emission that points to the
regime of polariton lasing
Efficient optical coupling to gallium arsenide nano-waveguides and resonators with etched conical fibers
We explore new methods for coupling light to on-chip gallium arsenide
nanophotonic structures using etched conical optical fibers. With a
single-sided conical fiber taper, we demonstrate efficient coupling to an
on-chip photonic bus waveguide in a liquid environment. We then show that it is
possible to replace such on-chip bus waveguide by two joined conical fibers in
order to directly couple light into a target whispering gallery disk resonator.
This latter approach proves compliant with demanding environments, such as a
vibrating pulse tube cryostat operating at low temperature, and it is
demonstrated both in the telecom band and in the near infrared close to 900 nm
of wavelength. The versatility, stability, and high coupling efficiency of this
method are promising for quantum optics and sensing experiments in constrained
environments, where obtaining high signal-to-noise ratio remains a challenge
Bogoliubov excitations driven by thermal lattice phonons in a quantum fluid of light
Elementary excitations in weakly interacting quantum fluids have a correlated
particle-hole nature that leads to spectacular macroscopic quantum phenomena
such as superfluidity. This many-body character was established in the context
of cold-atom condensates at thermal equilibrium in the framework of
Bogoliubov's celebrated theory of the weakly interacting Bose gas. Bogoliubov
excitations were also found to be highly relevant to driven-dissipative quantum
fluid of light, with certain resulting phenomena strikingly analogue to their
equilibrium counterparts, but also genuine out-of-equilibrium aspects. In this
work, we investigate both theoretically and experimentally a regime in which
the elementary excitations in a quantum fluid of light result dominantly from
their interaction with thermal lattice phonons, namely the elementary
vibrations of the crystal. By an accurate comparison with the theoretically
predicted spectral function of the driven-dissipative quantum fluid we achieve
a quantitative understanding of the particle-hole nature of the elementary
excitations, and unveil a remarkable decoupling from thermal excitations which
is expected to be relevant in equilibrium quantum fluids as well. Finally, we
exploit this quantitative understanding to identify a crossover temperature
around K, below which the lattice phonons are sufficiently quieted down
for the quantum fluctuations to take over in the generation of Bogoliubov
excitations. This regime is highly desired as it is characterized by strong
quantum correlations between Bogoliubov excitations.Comment: Main text: 22 pages 6 figures, Supplementary Information : 4 pages, 3
figure
Explicit Determination of Pinned-Pinned Beams with a Finite Number of Given Buckling Loads
We present an analytical procedure for the exact, explicit construction of Euler-Bernoulli beams with given values of the first N buckling loads. The result is valid for pinned-pinned (P-P) end conditions and for beams with regular bending stiffness. The analysis is based on a reduction of the buckling problem to an eigenvalue problem for a vibrating string, and uses recent results on the exact construction of Sturm-Liouville operators with prescribed natural frequencies
Probing many-body correlations using quantum-cascade correlation spectroscopy
The radiative quantum cascade, i.e. the consecutive emission of photons from
a ladder of energy levels, is of fundamental importance in quantum optics. For
example, the two-photon cascaded emission from calcium atoms was used in
pioneering experiments to test Bell inequalities. In solid-state quantum
optics, the radiative biexciton-exciton cascade has proven useful to generate
entangled-photon pairs. More recently, correlations and entanglement of
microwave photons emitted from a two-photon cascaded process were measured
using superconducting circuits. All these experiments rely on the highly
non-linear nature of the underlying energy ladder, enabling direct excitation
and probing of specific single-photon transitions. Here, we use exciton
polaritons to explore the cascaded emission of photons in the regime where
individual transitions of the ladder are not resolved, a regime that has not
been addressed so far. We excite a polariton quantum cascade by off-resonant
laser excitation and probe the emitted luminescence using a combination of
spectral filtering and correlation spectroscopy. Remarkably, the measured
photon-photon correlations exhibit a strong dependence on the polariton energy,
and therefore on the underlying polaritonic interaction strength, with clear
signatures from two- and three-body Feshbach resonances. Our experiment
establishes photon-cascade correlation spectroscopy as a highly sensitive tool
to provide valuable information about the underlying quantum properties of
novel semiconductor materials and we predict its usefulness in view of studying
many-body quantum phenomena
Elliptical micropillars for efficient generation and detection of coherent acoustic phonons
Coherent acoustic phonon generation and detection assisted by optical
resonances are at the core of efficient optophononic transduction processes.
However, when dealing with a single optical resonance, the optimum generation
and detection conditions take place at different laser wavelengths, i.e.
different detunings from the cavity mode. In this work, we theoretically
propose and experimentally demonstrate the use of elliptical micropillars to
reach these conditions simultaneously at a single wavelength. Elliptical
micropillar optophononic resonators present two optical modes with orthogonal
polarizations at different wavelengths. By employing a cross-polarized scheme
pump-probe experiment, we exploit the mode splitting and couple the pump beam
to one mode while the probe is detuned from the other one. In this way, at a
particular micropillar ellipticity, both phonon generation and detection
processes are enhanced. We report an enhancement of a factor of ~3.1 when
comparing the signals from elliptical and circular micropillars. Our findings
constitute a step forward in tailoring the light-matter interaction for more
efficient ultrahigh-frequency optophononic devices.Comment: 10 pages, 5 figure
GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors
International audienceThe development of sensors working in a large range of temperature is of crucial importance in areas such as monitoring of industrial processes or personal tracking using smart objects. Devices integrating GaN/Ga2O3 core/shell nanowires (NWs) are a promising solution for monitoring carbon monoxide (CO). Because the performances of sensors primarily depend on the material properties composing the active layer of the device, it is essential to control them and achieve material synthesis in the first time. In this work, we investigate the synthesis of GaN/Ga2O3 core-shell NWs with a special focus on the formation of the shell. The GaN NWs grown by plasma-assisted molecular beam epitaxy, are post-treated following thermal oxidation to form a Ga2O3-shell surrounding the GaN-core. We establish that the shell thickness can be modulated from 1 to 14 nm by changing the oxidation conditions and follows classical oxidation process: A first rapid oxide-shell growth, followed by a reduced but continuous oxide growth. We also discuss the impact of the atmosphere on the oxidation growth rate. By combining XRD-STEM and EDX analyses, we demonstrate that the oxide-shell is crystalline, presents the β-Ga2O3 phase, and is synthesized in an epitaxial relationship with the GaN-core
Croissance de nanofils InGaN pour les dispositifs de récupération d’énergie photovoltaïques et piézoélectriques
III-nitride materials are excellent semiconductors presenting several interesting properties for photovoltaic and piezoelectric applications. At the same time, the epitaxial growth of these materials in the form of nanowires (NW) is even more interesting, because binary and heterostructured III-N NWs have a higher crystalline quality compared to the 2D and bulk counterparts. In these contexts, this work focuses on the plasma-assisted MBE (PA-MBE) growth of InGaN / GaN NWs and their characterization. Three main topics are addressed: the growth of axial InGaN heterostructures by PA-MBE, their optical characterization, and the study of the selective area growth (SAG) of GaN NWs on transferred graphene. These studies allowed me to obtain a rational control on the growth mode of InGaN heterostructures in a wide range of In contents (up to ~ 40%) and morphologies, to study their axial band edge profile, useful for the optimal design of the photovoltaic structure, and to demonstrate for the first time in the literature, that the SAG of GaN NWs on patterned mono-layer graphene is a possible and very promising strategy to improve their homogeneity. Also, preliminary tests have shown that the piezoelectric conversion capacity of GaN NWs can be improved by about 35% when integrating an In-rich InGaN insertion into their volume.All these results constitute a decisive step in the control and the comprehension of the properties of these nanostructures, and establish very encouraging perspectives for their integration in novel and efficient photovoltaic and piezoelectric nano-generators.Les matériaux III-nitrures sont des excellents semi-conducteurs qui présentent plusieurs propriétés intéressantes pour les applications photovoltaïques et piézoélectriques. Au même temps, la croissance epitaxiale de ces matériaux sous forme de nanofil (NF) est de tant en plus intéressant, car les NFs nitrures binaires et heterostructurés, ont une qualité cristalline supérieure comparés aux homologues 2D et massifs. Dans ces contextes, ce travail est axé sur la croissance par MBE assistée par plasma (PA-MBE) de NFs InGaN/GaN et leur caractérisation. Trois sujets principaux ont été abordés: l'étude de la croissance d’heterostructures InGaN axiales par PA-MBE, leur caractérisation optique, et l'étude de la croissance sélective de NFs GaN sur graphène transféré. Ces études m’ont permis d’obtenir un control rational sur le mode de croissance d’heterostructures InGaN dans une large gamme de teneurs d’In (jusqu'à ~ 40%) et morphologies, de étudier leur structure de bande axiale, utile pour la conception optimale de la structure p-i-n photovoltaïque, et de démontrer pour le première fois dans la littérature, que l’épitaxie sélective de NFs de GaN sur MCG lithographié est une route possible et très promettent pour améliorer leur homogénéité. Ainsi, des tests préliminaires ont montré que la capacité de piézo-conversion des NFs GaN peut être améliorée d'environ 35% lors de l'intégration d’une insertion InGaN riche en In dans leur volume.Tous ces résultats constituent un ’étape décisive dans le contrôle et la comprension des propriétés de ces nanostructures, et donnent des perspectives très encourageantes pour leur intégrations dans des nano-générateurs à haute efficacité
Growth of InGaN nanowires for photovoltaic and piezoelectric energy harvesting
Les matériaux III-nitrures sont des excellents semi-conducteurs qui présentent plusieurs propriétés intéressantes pour les applications photovoltaïques et piézoélectriques. Au même temps, la croissance epitaxiale de ces matériaux sous forme de nanofil (NF) est de tant en plus intéressant, car les NFs nitrures binaires et heterostructurés, ont une qualité cristalline supérieure comparés aux homologues 2D et massifs. Dans ces contextes, ce travail est axé sur la croissance par MBE assistée par plasma (PA-MBE) de NFs InGaN/GaN et leur caractérisation. Trois sujets principaux ont été abordés: l'étude de la croissance d’heterostructures InGaN axiales par PA-MBE, leur caractérisation optique, et l'étude de la croissance sélective de NFs GaN sur graphène transféré. Ces études m’ont permis d’obtenir un control rational sur le mode de croissance d’heterostructures InGaN dans une large gamme de teneurs d’In (jusqu'à ~ 40%) et morphologies, de étudier leur structure de bande axiale, utile pour la conception optimale de la structure p-i-n photovoltaïque, et de démontrer pour le première fois dans la littérature, que l’épitaxie sélective de NFs de GaN sur MCG lithographié est une route possible et très promettent pour améliorer leur homogénéité. Ainsi, des tests préliminaires ont montré que la capacité de piézo-conversion des NFs GaN peut être améliorée d'environ 35% lors de l'intégration d’une insertion InGaN riche en In dans leur volume.Tous ces résultats constituent un ’étape décisive dans le contrôle et la comprension des propriétés de ces nanostructures, et donnent des perspectives très encourageantes pour leur intégrations dans des nano-générateurs à haute efficacité.III-nitride materials are excellent semiconductors presenting several interesting properties for photovoltaic and piezoelectric applications. At the same time, the epitaxial growth of these materials in the form of nanowires (NW) is even more interesting, because binary and heterostructured III-N NWs have a higher crystalline quality compared to the 2D and bulk counterparts. In these contexts, this work focuses on the plasma-assisted MBE (PA-MBE) growth of InGaN / GaN NWs and their characterization. Three main topics are addressed: the growth of axial InGaN heterostructures by PA-MBE, their optical characterization, and the study of the selective area growth (SAG) of GaN NWs on transferred graphene. These studies allowed me to obtain a rational control on the growth mode of InGaN heterostructures in a wide range of In contents (up to ~ 40%) and morphologies, to study their axial band edge profile, useful for the optimal design of the photovoltaic structure, and to demonstrate for the first time in the literature, that the SAG of GaN NWs on patterned mono-layer graphene is a possible and very promising strategy to improve their homogeneity. Also, preliminary tests have shown that the piezoelectric conversion capacity of GaN NWs can be improved by about 35% when integrating an In-rich InGaN insertion into their volume.All these results constitute a decisive step in the control and the comprehension of the properties of these nanostructures, and establish very encouraging perspectives for their integration in novel and efficient photovoltaic and piezoelectric nano-generators