174 research outputs found

    Differential effects of synchronous and asynchronous multifinger coactivation on human tactile performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA)). Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI). Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand.</p> <p>Results</p> <p>Synchronous and asynchronous CA was applied to all fingers of a subject's dominant hand. We evaluated changes in absolute touch thresholds, static two-point discrimination thresholds, and mislocalization of tactile stimuli to the fingertips. After synchronous CA, tactile acuity improved (i.e., discrimination thresholds decreased) and the frequency of mislocalization of tactile stimuli changed from directly neighboring fingers to more distant fingers. On the other hand, asynchronous CA did not significant improve tactile acuity. In fact, there was evidence of impaired tactile acuity. Multifinger CA with synchronous or asynchronous stimulation did not significantly alter absolute touch thresholds.</p> <p>Conclusion</p> <p>Our results demonstrate that it is possible to extend tactile CA to all fingers of a hand. The observed changes in mislocalization of tactile stimuli after synchronous CA indicate changes in the topography of the cortical hand representation. Although single-finger CA has been shown to improve tactile acuity, asynchronous CA of all fingers of the hand had the opposite effect, suggesting the need for synchrony in multifinger CA for improving tactile acuity.</p

    Improvement of sensorimotor functions in old age by passive sensory stimulation

    Get PDF
    Sensorimotor functions decrease in old age. The well-documented loss of tactile acuity in elderly is accompanied by deterioration of haptic performance and fine manipulative movements. Physical training and exercise can maintain sensorimotor fitness into high age. However, regular schedules of training require discipline and physical fitness. We here present an alternative interventional paradigm to enhance tactile, haptic, and fine motor performance based on passive, sensory stimulation by means of tactile coactivation. This approach is based on patterned, synchronous tactile stimulation applied to the fingertips for 3 hours. The stimulation drives plastic reorganizational changes in somatosensory cortex that affect perception and behavior: We demonstrate that following 3 hours of coactivation tactile acuity as well as haptic object exploration and fine motor performance are improved for at least 96 hours. Because this kind of intervention does not require active participation or attention of the subjects, we anticipate that coactivation is a prime candidate for future therapeutic interventions in patients with impaired sensorimotor abilities. It can be assumed that the maintenance and restoration of sensorimotor functions can ensure and preserve independence of daily living. Further optimizing of the stimulation protocol can be assumed to strengthen both the range and durability of its efficacy

    Repetitive Electric Stimulation Elicits Enduring Improvement of Sensorimotor Performance in Seniors

    Get PDF
    Age-related changes occur on all stages of the human somatosensory pathway, thereby deteriorating tactile, haptic, and sensorimotor performance. However, recent studies show that age-related changes are not irreversible but treatable through peripheral stimulation paradigms based on neuroplasticity mechanisms. We here applied repetitive electric stimulation (rES) to the fingers on a bi-weekly basis for 4 weeks to induce enduring amelioration of age-related changes in healthy individuals aged 60–85 years. Tactile, haptic, and motor performance gradually improved over time of intervention. After termination of rES, tactile acuity recovered to baseline within 2 weeks, while the gains in haptic and motor performance were preserved for 2 weeks. Sham stimulation showed no comparable changes. Our data indicate that age-related decline of sensorimotor performance can be ameliorated by rES and can be stabilized by the repeated application. Thus, long-term application of rES appears as a prime candidate for maintaining sensorimotor functions in elderly individuals

    The NMDA antagonist memantine affects training induced motor cortex plasticity – a study using transcranial magnetic stimulation [ISRCTN65784760]

    Get PDF
    BACKGROUND: Training of a repetitive synchronised movement of two limb muscles leads to short-term plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation (TMS) mapping. We used this paradigm to study the effect of memantine, a NDMA antagonist, on short-term motor cortex plasticity in 20 healthy human subjects, and we were especially interested in possible differential effects of different treatment regimens. In a randomised double-blinded cross over study design we therefore administered placebo or memantine either as a single dosage or as an ascending dosage over 8 days. Before and after one hour of motor training, which consisted of a repetitive co-contraction of the abductor pollicis brevis (APB) and the deltoid muscle, we assessed the motor output map of the APB muscle by TMS under the different conditions. RESULTS: We found a significant medial shift of the APB motor output map after training in the placebo condition, indicating training-induced short-term plastic changes in the motor cortex. A single dosage of memantine had no significant effect on this training-induced plasticity, whereas memantine administered in an ascending dosage over 8 days was able to block the cortical effect of the motor training. The memantine serum levels after 8 days were markedly higher than the serum levels after a single dosage of memantine, but there was no individual correlation between the shift of the motor output map and the memantine serum level. Besides, repeated administration of a low memantine dosage also led to an effective blockade of training-induced cortical plasticity in spite of serum levels comparable to those reached after single dose administration, suggesting that the repeated administration was more important for the blocking effect than the memantine serum levels. CONCLUSION: We conclude that the NMDA-antagonist memantine is able to block training-induced motor cortex plasticity when administered over 8 days, but not after administration of a single dose. This differential effect might be mainly due to the prolonged action of memantine at the NMDA receptor. These findings must be considered if clinical studies are designed, which aim at evaluating the potency of memantine to prevent "maladaptive" plasticity, e.g. after limb amputation

    Rapid Assessment of Age-Related Differences in Standing Balance

    Get PDF
    As life expectancy continues to rise, in the future there will be an increasing number of older people prone to falling. Accordingly, there is an urgent need for comprehensive testing of older individuals to collect data and to identify possible risk factors for falling. Here we use a low-cost force platform to rapidly assess deficits in balance under various conditions. We tested 21 healthy older adults and 24 young adults during static stance, unidirectional and rotational displacement of their centre of pressure (COP). We found an age-related increase in postural sway during quiet standing and a reduction of maximal COP displacement in unidirectional and rotational displacement tests. Our data show that even low-cost computerized assessment tools allow for the comprehensive testing of balance performance in older subjects

    Cooperation and Deception Recruit Different Subsets of the Theory-of-Mind Network

    Get PDF
    The term “theory of mind” (ToM) describes an evolved psychological mechanism that is necessary to represent intentions and expectations in social interaction. It is thus involved in determining the proclivity of others to cooperate or defect. While in cooperative settings between two parties the intentions and expectations of the protagonists match, they diverge in deceptive scenarios, in which one protagonist is intentionally manipulated to hold a false belief about the intention of the other. In a functional magnetic resonance imaging paradigm using cartoons showing social interactions (including the outcome of the interaction) between two or three story characters, respectively, we sought to determine those brain areas of the ToM network involved in reasoning about cooperative versus deceptive interactions. Healthy volunteers were asked to reflect upon the protagonists' intentions and expectations in cartoons depicting cooperation, deception or a combination of both, where two characters cooperated to deceive a third. Reasoning about the mental states of the story characters yielded substantial differences in activation patterns: both deception and cooperation activated bilateral temporoparietal junction, parietal and cingulate regions, while deception alone additionally recruited orbitofrontal and medial prefrontal regions. These results indicate an important role for prefrontal cortex in processing a mismatch between a character's intention and another's expectations as required in complex social interactions

    Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning – a minireview

    Get PDF
    The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability

    Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans

    Get PDF
    Transcranial direct current stimulation (tDCS) is a noninvasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by paired-pulse suppression. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS

    Access to

    Get PDF
    As life expectancy continues to rise, in the future there will be an increasing number of older people prone to falling. Accordingly, there is an urgent need for comprehensive testing of older individuals to collect data and to identify possible risk factors for falling. Here we use a low-cost force platform to rapidly assess deficits in balance under various conditions. We tested 21 healthy older adults and 24 young adults during static stance, unidirectional and rotational displacement of their centre of pressure (COP). We found an age-related increase in postural sway during quiet standing and a reduction of maximal COP displacement in unidirectional and rotational displacement tests. Our data show that even low-cost computerized assessment tools allow for the comprehensive testing of balance performance in older subjects
    corecore