28 research outputs found
The omics in migraine
The term omics consist of three main areas of molecular biology, such as genomics, proteomics and metabolomics. The omics synergism recognise migraine as an ideal study model, due to its multifactorial nature. In this review, the plainly research data featuring in this complex network are reported and analyzed, as single or multiple factor in pathophysiology of migraine. The future of migraine biomolecular research shall be focused on networking among these different and hierarchical disciplines. We have to look for its Ariadne's tread, in order to see the whole painting of migraine molecular biology
Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes
Aims:
The Notch signalling pathway regulates the balance between proliferation and differentiation in several tissues, including the heart. Our previous work has demonstrated that the proliferative potential of neonatal cardiomyocytes relies on Notch1 activity. A deep investigation on the biochemical regulation of the Notch signalling in cardiomyocytes is the focus of the current research.
Methods and results:
We show that the Notch1 intracellular domain is acetylated in proliferating neonatal rat cardiomyocytes and that acetylation tightly controls the amplitude and duration of Notch signalling. We found that acetylation extends the half-life of the protein, and enhanced its transcriptional activity, therefore counteracting apoptosis and sustaining cardiomyocyte proliferation. Sirt1 acted as a negative modulator of Notch1 signalling; its overexpression in cardiomyocytes reverted Notch acetylation and dampened its stability. A constitutively acetylated fusion protein between Notch1 and the acetyltransferase domain of p300 promoted cardiomyocyte proliferation, which was remarkably sustained over time. Viral vector-mediated expression of this protein enhanced heart regeneration after apical resection in neonatal mice.
Conclusion:
These results identify the reversible acetylation of Notch1 as a novel mechanism to modulate its signalling in the heart and tune the proliferative potential of cardiomyocytes
Mouse screen reveals multiple new genes underlying mouse and human hearing loss.
Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities
Two new mouse alleles of Ocm and Slc26a5
The genes Ocm (encoding oncomodulin) and Slc26a5 (encoding prestin) are expressed strongly in outer hair cells and both are involved in deafness in mice. However, it is not clear if they influence the expression of each other. In this study, we characterise the auditory phenotype resulting from two new mouse alleles, Ocmtm1e and Slc26a5tm1Cre. Each mutation leads to absence of detectable mRNA transcribed from the mutant allele, but there was no evidence that oncomodulin regulates expression of prestin or vice versa. The two mutants show distinctive patterns of auditory dysfunction. Ocmtm1e homozygotes have normal auditory brainstem response thresholds at 4 weeks old followed by progressive hearing loss starting at high frequencies, while heterozygotes show largely normal thresholds until 6 months of age, when signs of worse thresholds are detected. In contrast, Slc26a5tm1Cre homozygotes have stable but raised thresholds across all frequencies tested, 3 to 42 kHz, at least from 4 to 8 weeks old, while heterozygotes have raised thresholds at high frequencies. Distortion product otoacoustic emissions and cochlear microphonics show deficits similar to auditory brainstem responses in both mutants, suggesting that the origin of hearing impairment is in the outer hair cells. Endocochlear potentials are normal in the two mutants. Scanning electron microscopy revealed normal development of hair cells in Ocmtm1e homozygotes but scattered outer hair cell loss even at 4 weeks old when thresholds appeared normal, indicating that there is not a direct relationship between numbers of outer hair cells present and auditory thresholds.</p
The Effect of a Pex3 Mutation on Hearing and Lipid Content of the Inner Ear
Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders
ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells
In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs