143 research outputs found

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Activation of PKR Causes Amyloid ß-Peptide Accumulation via De-Repression of BACE1 Expression

    Get PDF
    BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD

    Predictions for the future of kallikrein-related peptidases in molecular diagnostics

    Get PDF
    Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer’s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research

    Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors

    Get PDF
    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis

    Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles
    corecore