25 research outputs found

    Business models in the Smart Grid: challenges, opportunities and proposals for prosumer profitability.

    Get PDF
    Considering that non-renewable energy resources are dwindling, the smart grid turns out to be one of the most promising and compelling systems for the future of energy. Not only does it combine efficient energy consumption with avant-garde technologies related to renewable energies, but it is also capable of providing several beneficial utilities, such as power monitoring and data provision. When smart grid end users turn into prosumers, they become arguably the most important value creators within the smart grid and a decisive agent of change in terms of electricity usage. There is a plethora of research and development areas related to the smart grid that can be exploited for new business opportunities, thus spawning another branch of the so-called ?green economy? focused on turning smart energy usage into a profitable business. This paper deals with emerging business models for smart grid prosumers, their strengths and weaknesses and puts forward new prosumer-oriented business models, along with their value propositions

    Un modelo no paramétrico de evaluación de la eficiencia y la gestión de las redes sociales virtuales : una aplicación a las empresas del sector de las telecomunicaciones en España

    Get PDF
    Este artículo analiza la relación entre la eficiencia productiva y las Redes Sociales Virtuales (RSV) en las empresas de telecomunicaciones en España. En una primera etapa, se aplica el análisis envolvente de datos (DEA) incorporando varios indicadores de actividad ?Social Media?. En una segunda etapa, se utiliza una regresión logística para caracterizar las empresas eficientes. Los resultados muestran que la capacidad de absorción y utilización de las RSV es un factor determinante en la mejora de la eficiencia productiva. La utilización combinada y las distintas capacidades de gestión de las RSV permiten identificarlas como un recurso heterogéneo. Este trabajo presenta un modelo para la evaluación del desempeño estratégico al abordar su presencia y actividad en RSV. ABSTRACT. This paper analyzes the relationship between the productive efficiency and the Online Social Networks - OSN in the Spanish telecommunications firms. First, a data envelopment analysis (DEA) is used and several indicators of business "Social Media" activities are incorporated. In a second stage, a logistic regression model regression is applied to characteri ze the efficient enterprises. Results show that the company's ability to absorb and utilize this OSN is a key factor in improving the productive efficiency. These results on the combined use and different management capabilities of OSN point to a definitio n of OSN as a heterogeneous resource. This paper presents a model for assessing the strategic performance to address their presence and activity in OSN

    Aprendizaje asistido por dispositivos móviles: UP2B2

    Get PDF
    Este trabajo se enmarca en el enfoque denominado Mobile Assisted Language Learning (MALL) y presenta un prototipo de juego de preguntas y respuestas de opción múltiple que revisa la gramática, el vocabulario y el uso de la lengua inglesa del nivel B2 (Marco Común Europeo de Referencia para las Lenguas-MCERL). La aplicación se caracteriza por presentar una componente de gamificación cuyo objetivo es motivar a los estudiantes a que la usen mediante un sistema de puntuación que los sitúa en un ranking global y que considera tanto los aciertos de cada uno como el tiempo en completar los tests. Se definen distintos índices para la monitorización de la plataforma e indicadores tanto de carácter cualitativo como cuantitativo para la medida de los resultados. ABSTRACT This work is framed within the approach called Mobile Assisted Language Learning (MALL) and presents a game prototype consisting of multiple choice questions and answers that assess the grammar, vocabulary and the use of the English language at level B2 according to the Common European Framework of Reference for Languages. The application is characterized by a strong gamification component that aims to motivate the students using it. Therefore, response time, correct answers and a ranking with the punctuation centre the most prominent aspects related to its playability. Different indexes are defined for the monitoring of the platform as well as qualitative and quantitative indicators for the study of the results

    Promoción de la salud y entornos saludables

    Get PDF
    A forestar forestalAplicación de un programa educativo participativo en salud  bucal a una comunidad de adultos mayoresBiblioteca móvil y su implementación en el hospital Padre HurtadoConsumo de riesgo de alcohol en Chile: una propuesta innovadora de intervenciónDiseño de un programa interactivo de promoción de la salud vocal para NB1Encuentro formativo en promoción de salud y gestión de entornos saludables para TenoExperiencia docente: programa intersectorial de promoción/prevención en preescolares de comunas vulnerables, Región MetropolitanaFiltrado glomerular, método preventivo aparición de fibrosis sistémica nefrogénica por gadolinio en examen de RMImplementación de consejerías en vida sana en APS, Región de los RíosMedicina preventiva en feria libre de la población San Gregorio: Cecof San Gregorio, Contagiando SaludMetodología innovadora en la enseñanza de una ectoparasitosisPrevención de accidentes por monóxido de carbono en edificios, Providencia 2002-2009Programa de promoción y prevención en salud bucal para preescolaresPromoviendo hábitos saludables en los vecinos de Reñaca Alto, Viña del Mar, 2009Rol de la capacitación en la implementación de acciones para la prevención de la obesidadSatisfacción usuaria en el Cesfam Natales a un año de su funcionamientoTres estrategias publicitarias y de comunicación aplicadas al consumo de alcohol de bajo riesgoTropa de la salud: uso de los medios como forma de promover la salu

    The relationship between gut and nasopharyngeal microbiome composition can predict the severity of COVID-19

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity but no specific determinants of infection outcome have been identified yet, maybe due the complex pathogenic mechanisms. The microbiota could play a key role in the infection and in the progression and outcome of the disease. Hence, SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. Methods: To identify new prognostic markers for the disease, a multicenter prospective observational cohort study was carried out in COVID-19 patients that were divided in three cohorts according to their symptomatology: mild (n=24), moderate (n=51) and severe/critical (n=31). Faecal and nasopharyngeal samples were taken and the microbiota was analysed. Results: Microbiota composition could be associated with the severity of the symptoms and the linear discriminant analysis identified the genera Mycoplasma and Prevotella as severity biomarkers in nasopharyngeal samples, and Allistipes, Enterococcus and Escherichia in faecal samples. Moreover, M. salivarium was defined as a unique microorganism in COVID-19 patients' nasopharyngeal microbiota while P. bivia and P. timonensis were defined in faecal microbiota. A connection between faecal and nasopharyngeal microbiota in COVID-19 patients was also identified as a strong positive correlation between P. timonensis (faeces) towards P. dentalis and M. salivarium(nasopharyngeal) was found in critically ill patients. Conclusions: This ratio could be used as a novel prognostic biomarker for severe COVID-19 patients.The research project was sup-ported by Government of Andalucia (Spain) (CV20-99908).N

    Latin American study of hereditary breast and ovarian cancer LACAM : a genomic epidemiology approach

    Get PDF
    Q2Q1Artículo original1-13Purpose: Hereditary Breast and Ovarian Cancer (HBOC) syndrome is responsible for ~5–10% of all diagnosed breast and ovarian cancers. Breast cancer is the most common malignancy and the leading cause of cancer-related mortality among women in Latin America (LA). The main objective of this study was to develop a comprehensive understanding of the genomic epidemiology of HBOC throughout the establishment of The Latin American consortium for HBOC-LACAM, consisting of specialists from 5 countries in LA and the description of the genomic results from the first phase of the study. Methods: We have recruited 403 individuals that fulfilled the criteria for HBOC from 11 health institutions of Argentina, Colombia, Guatemala, Mexico and Peru. A pilot cohort of 222 individuals was analyzed by NGS gene panels. One hundred forty-three genes were selected on the basis of their putative role in susceptibility to different hereditary cancers. Libraries were sequenced in MiSeq (Illumina, Inc.) and PGM (Ion Torrent-Thermo Fisher Scientific) platforms. Results: The overall prevalence of pathogenic variants was 17% (38/222); the distribution spanned 14 genes and varied by country. The highest relative prevalence of pathogenic variants was found in patients from Argentina (25%, 14/57), followed by Mexico (18%, 12/68), Guatemala (16%, 3/19), and Colombia (13%, 10/78). Pathogenic variants were found in BRCA1 (20%) and BRCA2 (29%) genes. Pathogenic variants were found in other 12 genes, including high and moderate risk genes such as MSH2, MSH6, MUTYH, and PALB2. Additional pathogenic variants were found in HBOC unrelated genes such as DCLRE1C, WRN, PDE11A, and PDGFB. Conclusion: In this first phase of the project, we recruited 403 individuals and evaluated the germline genetic alterations in an initial cohort of 222 patients among 4 countries. Our data show for the first time in LA the distribution of pathogenic variants in a broad set of cancer susceptibility genes in HBOC. Even though we used extended gene panels, there was still a high proportion of patients without any detectable pathogenic variant, which emphasizes the larger, unexplored genetic nature of the disease in these populations

    XLVIII Coloquio Argentino de Estadística. VI Jornada de Educación Estadística Martha Aliaga Modalidad virtual

    Get PDF
    Esta publicación es una compilación de las actividades realizadas en el marco del XLVIII Coloquio Argentino de Estadística y la VI Jornada de Educación Estadística Martha Aliaga organizada por la Sociedad Argentina de Estadística y la Facultad de Ciencias Económicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos últimos se dispone de un hipervínculo que direcciona a la presentación del trabajo. Ellos obedecen a distintas temáticas de la estadística con una sesión especial destinada a la aplicación de modelos y análisis de datos sobre COVID-19.Fil: Saino, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Aguirre, Alberto Frank Lázaro. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Ruiz, Sebastián León. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: Alegría Jiménez, Alfredo. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de Ingeniería en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, Ramón. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Lezcano, Mikaela. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Urruticoechea, Alar. Universidad Católica del Uruguay. Facultad de Ciencias de la Salud. Departamento de Neurocognición; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Canal Martínez, Margarita. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Rojo, María Paula. Universidad Nacional de Córdoba; Argentina.Fil: Nicolas, María Claudia. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Barbaroy, Tomás. Universidad Nacional de Córdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de Matemática de Bahía Blanca (INMABB); Argentina.Fil: Pisani, María Virginia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Elorza, María Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, María Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Saenz, José Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Pérez de Vida, Fernando. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad Anónima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la República. Facultad de Agronomía; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Pappaterra, María Lucía. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Ascua, Melina Belén. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Roldán, Dana Agustina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: González, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de Estadística; Argentina.Fil: Demaio, Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Hernández, Paz. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fernícola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Dundray, , Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farfán Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, Noemí M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Bossolasco, María Luisa. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Leal, Danilo. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Nicolis, Orietta. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Bonadies, María Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Agrimensura. Grupo de Aplicaciones Matemáticas y Estadísticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Gómez, Pablo Sebastián. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Real, Ariel Hernán. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: López Calcagno, Yanil. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: García Bazán, Gaspar. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: Bermúdez Rubio, Dagoberto. Universidad Santo Tomás. Facultad de Estadística; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones Matemáticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Méndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE); Argentina.Fil: García Mata, Luis Ángel. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Ramírez González, Marco Antonio. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas; España.Fil: Scavino, Marco. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Estragó, Virginia. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, Matías. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, Andrés. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP. Departamento de Bioestadística; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, José Eduardo. Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de Bioestadística; Brasil.Fil: Spataro, Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Nahas, Estefanía. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Márquez, Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Economía y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Caro, Valentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Economía; Argentina.Fil: Blacona, María Teresa. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: García, Gregorio. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Funkner, Sofía. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, María Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, María Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Castro González, Enrique L. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Roldán, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: González, Gisela Paula. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de Economía; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Marfia, Martín. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina.Fil: Closas, Humberto. Universidad Tecnológica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad Tecnológica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad Tecnológica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto José Andrés. Investigador Independiente; Argentina.Fil: González, Mariana Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemáticas; Argentina.Fil: Lescano, Maira Celeste.

    Multivariate Data Envelopment Analysis to Measure Airline Efficiency in European Airspace: A Network-Based Approach

    Full text link
    In this paper, data envelopment analysis (DEA) is applied to exhaustively examine the efficiency of the main airline companies in the European airspace by using novel input/output parameters: business management factors, network analysis metrics, as well as social media estimators. Furthermore, we also use network analysis to provide a better differentiation among efficiency values. Results indicate that user engagement, as well as the analysis of the position within the airspace-from an operative perspective, influence the efficiency of the airline companies, allowing a more comprehensive understanding of its functioning

    Enhancing fun through gamification to improve engagement in MOOC

    Full text link
    Massive Open Online Courses (MOOCs), regardless of their topic, are a perfect space to generate, through virtual learning communities associated with them, very valuable resources for their participants and, in general, anyone interested in the topic covered. If in the design of these learning spaces, elements specific to games are added to them, which is known as gamification, we can try to increase the engagement of the student towards the course and, therefore, towards the community. This paper presents an experience of a MOOC of Universidad Rey Juan Carlos (Spain) with a connectivist approach. Aspects such as fun and motivation have been worked on in the design, through the application of gamified activities and the use of elements from social networks, considered as gamification, with the aim of increasing participation and engagement within a Facebook group, used as a community to support the course. We have analyzed aspects such as enjoyment and motivation, the result of which has been active participation and high engagement within the MOOC community in the form of content and especially great interaction, highlighting the existence of continuous activity once the edition of the MOOC is finished, as a consequence of a habit generated in the student

    Pilot experience to increase the environmental awareness of young students (12-18 years) through innovating formation by UPM researchers in the classroom

    Full text link
    The Dive & Breath project is part of the Madrid Deep Demonstration (DD) portfolio and it is supported by the Spanish Climate KIC Education Office (CK). The project promotes the participatory innovation of teenagers and incorporates experiential learning to guide them to the collective design and implementation of a network of the environmental quality sensors of their neighbourhood (air and water monitoring). The process is carried out by professors and is applied to pilot groups of students, and later, the students, based on their experience and learning, teach other students. This way, the replication phase of the innovative methodologies in the educational field is introduced. The interdisciplinary approach merges through games, observation, and data collection. The project has used ICTs tools, due to COVID circumstances. The practical learning has been developed through DIY (construction of sensors) and citizen science. The proposal incorporates innovative learning methodologies such as experiential learning, based on a collective construction of knowledge that brings together all the agents involved. This approach transcends the usual proposals in the educational field. In this case, from the design phase, diverse visions come together to build a conceptual framework on which practical knowledge is built through experience
    corecore