326 research outputs found
Modelos de memoria en entornos de virtualización
La virtualización es una técnica que se utiliza para correr múltiples sistemas operativos en una única máquina fÃsica, creando la ilusión de que en realidad cada uno de estos sistemas operativos corre en una máquina virtual diferente. El monitor de máquinas virtuales es el encargado de administrar los recursos compartidos por los sistemas operativos que corren en las máquinas virtuales, de manera que estos sistemas, y las aplicaciones que corren sobre ellos, puedan ejecutar adecuadamente. En particular, el acceso y uso de la memoria principal es un aspecto crÃtico que el monitor de máquinas virtuales debe controlar. En este trabajo se presentan los distintos componentes de memoria que están involucrados al virtualizar una computadora y se analizan las maneras en que estos pueden ser tratados al ser virtualizados
QUIJOTE scientific results - VIII. Diffuse polarized foregrounds from component separation with QUIJOTE-MFI
We derive linearly polarized astrophysical component maps in the Northern Sky from the QUIJOTE-MFI data at 11 and 13?GHz in combination with the Wilkinson Microwave Anisotropy Probe K and Ka bands (23 and 33?GHz) and all Planck polarized channels (30-353-GHz), using the parametric component separation method B-SeCRET. The addition of QUIJOTE-MFI data significantly improves the parameter estimation of the low-frequency foregrounds, especially the estimation of the synchrotron spectral index, [beta]s. We present the first detailed ?s map of the Northern Celestial Hemisphere at a smoothing scale of 2°. We find statistically significant spatial variability across the sky. We obtain an average value of ?3.08 and a dispersion of 0.13, considering only pixels with reliable goodness of fit. The power-law model of the synchrotron emission provides a good fit to the data outside the Galactic plane but fails to track the complexity within this region. Moreover, when we assume a synchrotron model with uniform curvature, cs, we find a value of cs = ?0.0797 ± 0.0012. However, there is insufficient statistical significance to determine which model is favoured, either the power law or the power law with uniform curvature. Furthermore, we estimate the thermal dust spectral parameters in polarization. Our cosmic microwave background, synchrotron, and thermal dust maps are highly correlated with the corresponding products of the PR4 Planck release, although some large-scale differences are observed in the synchrotron emission. Finally, we find that the ?s estimation in the high signal-to-noise synchrotron emission areas is prior-independent, while, outside these regions, the prior governs the [beta]s estimation.We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester, and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007- 68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RBC21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015- 0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 687312 (RADIOFOREGROUNDS). EdlH acknowledges financial support from the Concepcion´ Arenal Programme of the Universidad de Cantabria. DT acknowledges the support from the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) with grant no. 2020PM0042. FP acknowledges support from the Spanish State Research Agency (AEI) under grant number PID2019-105552RB-C43. The authors acknowledge the computer resources, technical expertise, and assistance provided by the Spanish Supercomputing Network (RES) node at Universidad de Cantabria. Some of the presented results are based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA) and the Planck Legacy Archive (PLA). Support for LAMBDA is provided by the NASA Office of Space Science. Some of the results in this paper have been derived using the HEALPIX package (Gorski ´ et al. 2005), and the HEALPY (Zonca et al. 2019), NUMPY (Harris et al. 2020), EMCEE (ForemanMackey et al. 2013), and MATPLOTLIB (Hunter 2007) PYTHON packages
QUIJOTE scientific results - III. Microwave spectrum of intensity and polarization in the Taurus Molecular Cloud complex and L1527
ABSTRACT: We present new intensity and polarization observations of the Taurus Molecular Cloud (TMC) region in the frequency range 10–20 GHz with the multifrequency instrument (MFI) mounted on the first telescope of the Q-U-I-JOint TEnerife (QUIJOTE) experiment. From the combination of the QUIJOTE data with the WMAP 9-yr data release, the Planck second data release, the DIRBE maps, and ancillary data, we detect an anomalous microwave emission (AME) component with flux density SAME,peak = 43.0 ± 7.9 Jy in the TMC and SAME,peak = 10.7 ± 2.7 Jy in the dark cloud nebula L1527, which is part of the TMC. In the TMC the diffuse AME emission peaks around a frequency of 19 GHz, compared with an emission peak about a frequency of 25 GHz in L1527. In the TMC, the best constraint on the level of AME polarization is obtained at the Planck channel of 28.4 GHz, with an upper limit πAME < 4.2 per cent (95 per cent C.L.), which reduces to πAME < 3.8 per cent (95 per cent C.L.) if the intensity of all the free–free, synchrotron and thermal dust components are negligible at this frequency. The same analysis in L1527 leads to πAME < 5.3 per cent (95 per cent C.L.) or πAME < 4.5 per cent (95 per cent C.L.) under the same assumption. We find that in the TMC and L1527 on average about 80 per cent of the H II gas should be mixed with thermal dust. Our analysis shows how the QUIJOTE-MFI 10–20 GHz data provide key information to properly separate the synchrotron, free–free, and AME components.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2007-68058-C03-01, AYA2010-21766-C03-02, AYA2012-39475-C02-01, AYA2014-60438-P: ESP2015- 70646.C2-1-R, AYA2015-64508-P and the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation)
QUIJOTE scientific results - VI. The Haze as seen by QUIJOTE
The Haze is an excess of microwave intensity emission surrounding the Galactic Centre. It is spatially correlated with the γ -ray Fermi bubbles, and with the S-PASS radio polarization plumes, suggesting a possible common provenance. The models proposed to explain the origin of the Haze, including energetic events at the Galactic Centre and dark matter decay in the Galactic halo, do not yet provide a clear physical interpretation. In this paper, we present a reanalysis of the Haze including new observations from the Multi-Frequency Instrument (MFI) of the Q-U-I Joint TEnerife (QUIJOTE) experiment, at 11 and 13 GHz. We analyse the Haze in intensity and polarization, characterizing its spectrum. We detect an excess of diffuse intensity signal ascribed to the Haze. The spectrum at frequencies 11 GHz ≤ ν ≤ 70 GHz is a power law with spectral index βH = −2.79 ± 0.08, which is flatter than the Galactic synchrotron in the same region (βS = −2.98 ± 0.04), but steeper than that obtained from previous works (βH ∼ −2.5 at 23 GHz ≤ ν ≤ 70 GHz). We also observe an excess of polarized signal in the QUIJOTE-MFI maps in the Haze area. This is a first hint detection of polarized Haze, or a consequence of curvature of the synchrotron spectrum in that area. Finally, we show that the spectrum of polarized structures associated with Galactic Centre activity is steep at low frequencies (β ∼ −3.2 at 2.3 GHz ≤ ν ≤ 23 GHz), and becomes flatter above 11 GHz.The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007- 68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RBC21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015- 0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS). This research made use of computing time available on the high-performance computing systems at the IAC. We thankfully acknowledge the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Española de Supercomputacion), as well as the computer resources used: the Deimos/Diva Supercomputer, located at the IAC. FG acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101001897). EdlH acknowledges partial financial support from the Concepción Arenal Programme of the Universidad de Cantabria. FP acknowledges support from the Spanish State Research Agency (AEI) under grant number PID2019-105552RB-C43. BR-G acknowledges ASI-INFN Agreement 2014-037-R.0. DT acknowledges the support from the Chinese Academy of Sciences President’s International Fellowship Initiative, Grant N. 2020PM0042. This work has made use of S-band Polarisation All Sky Survey (S-PASS) data. Some ofthe resultsin this paper have been derived using the HEALPIX (Gorski et al. 2005) and HEALPY (Zonca et al. 2019) packages. We also use NUMPY (Harris et al. 2020), and MATPLOTLIB (Hunter 2007)
QUIJOTE scientific results - VII. Galactic AME sources in the QUIJOTE-MFI northern hemisphere wide survey
The QUIJOTE-MFI Northern Hemisphere Wide Survey has provided maps of the sky above declinations −30◦ at 11, 13, 17, and 19 GHz. These data are combined with ancillary data to produce Spectral Energy Distributions in intensity in the frequency range 0.4–3 000 GHz on a sample of 52 candidate compact sources harbouring anomalous microwave emission (AME). We apply a component separation analysis at 1◦ scale on the full sample from which we identify 44 sources with high AME significance. We explore correlations between different fitted parameters on this last sample. QUIJOTE-MFI data contribute to notably improve the characterization of the AME spectrum, and its separation from the other components. In particular, ignoring the 10–20 GHz data produces on average an underestimation of the AME amplitude, and an overestimation of the free–free component. We find an average AME peak frequency of 23.6 ± 3.6 GHz, about 4 GHz lower than the value reported in previous studies. The strongest correlation is found between the peak flux density of the thermal dust and of the AME component. A mild correlation is found between the AME emissivity (AAME/τ250) and the interstellar radiation field. On the other hand no correlation is found between the AME emissivity and the free–free radiation Emission Measure. Our statistical results suggest that the interstellar radiation field could still be the main driver of the intensity of the AME as regards spinning dust excitation mechanisms. On the other hand, it is not clear whether spinning dust would be most likely associated with cold phases of the interstellar medium rather than with hot phases dominated by free–free radiation.We thank the referee of this article, Simon Casassus, for his comments that help to improve the communication of some of the concepts presented in this work. We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER - Fondo Europeo de Desarrollo Regional funds), PGC2018-101814-B-I00, PID2019-110610RB-C21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID 2020010108. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS).FP acknowledges the European Commission under the Marie Sklodowska-Curie Actions within the European Union's Horizon 2020 research and innovation programme under Grant Agreement number 658499 (PolAME). FP acknowledges support from the Spanish State Research Agency (AEI) under grant numbers PID2019-105552RB-C43. FG acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101001897). EdlH acknowledge partial financial support from the Concepcion Arenal Programme of the Universidad de Cantabria. BR -G acknowledges the Agenzia Spaziale Italiana - Istituto Nazionale di Fisica Nucleare (ASI-INFN) Agreement 2014-037-R.0. DT acknowledges the support from the Chinese Academy of Sciences President's International Fellowship Initiative, Grant No. 2020PM0042. We acknowledge the use of data from the Planck/ESA mission, downloaded from the Planck Legacy Archive, and of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Some of the results in this paper have been derived using the HEALPIX (Gorski et al. 2005 ) package
Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome
The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology
QUIJOTE scientific results - IX. Radio sources in the QUIJOTE-MFI wide survey maps
We present the catalogue of Q-U-I JOint TEnerife (QUIJOTE) Wide Survey radio sources extracted from the maps of the Multi-Frequency Instrument compiled between 2012 and 2018. The catalogue contains 786 sources observed in intensity and polarization, and is divided into two separate sub-catalogues: one containing 47 bright sources previously studied by the Planck collaboration and an extended catalogue of 739 sources either selected from the Planck Second Catalogue of Compact Sources or found through a blind search carried out with a Mexican Hat 2 wavelet. A significant fraction of the sources in our catalogue (38.7 per cent) are within the |b| ≤ 20â—¦ region of the Galactic plane. We determine statistical properties for those sources that are likely to be extragalactic. We find that these statistical properties are compatible with currently available models, with a ∼1.8 Jy completeness limit at 11 GHz. We provide the polarimetric properties of (38, 33, 31, 23) sources with P detected above the 99.99 per cent significance level at (11, 13, 17, 19) GHz respectively. Median polarization fractions are in the 2.8–4.7 per cent range in the 11–19 GHz frequency interval. We do not distinguish between Galactic and extragalactic sources here. The results presented here are consistent with those reported in the literature for flat- and steep-spectrum radio sources.We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de AstrofÃsica de Canarias (IAC), the Instituto de FÃsica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007- 68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RBC21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015- 0548 and CEX2019-000920-S, the MarÃa de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010- 00064 (EPI: Exploring the Physics of Inflation). DT acknowledges the support from the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) with Grant N. 2020PM0042. FP acknowledges support from the Spanish State Research Agency (AEI) under grant number PID2019-105552RBC43. We acknowledge support from the ACIISI, ConsejerÃa de EconomÃa, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS). This research has made use of data from the OVRO 40-m monitoring program (Richards et al. 2011), supported by private funding from the California Insitute of Technology and the Max Planck Institute forRadio Astronomy, and by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST-1109911. Some of the results in this paper have been derived using the HEALPY and HEALPIX packages (Gorski et al. 2005; Zonca et al. 2019). The packages ASTROPY (Astropy Collaboration 2013, 2018), SCIPY (Virtanen et al. 2020), MATPLOTLIB (Hunter 2007), NUMPY (Harris et al. 2020), and EMCEE (Foreman-Mackey et al. 2013) have been extensively used for data analysis and plotting
The new multi-frequency instrument (MFI2) for the QUIJOTE facility in Tenerife
The QUIJOTE (Q-U-I joint Tenerife) experiment combines the operation of two radio-telescopes and three instruments working in the microwave bands 10?20 GHz, 26-36 GHz and 35-47 GHz at the Teide Observatory, Tenerife, and has already been presented in previous SPIE meetings (Hoyland, R. J. et al, 2012; Rubiño-MartÃn et al., 2012). The Cosmology group at the IAC have designed a new upgrade to the MFI instrument in the band 10-20 GHz. The aim of the QUIJOTE telescopes is to characterise the polarised emission of the cosmic microwave background (CMB), as well as galactic and extra-galactic sources, at medium and large angular scales. This MFI2 will continue the survey at even higher sensitivity levels. The MFI2 project led by the Instituto de AstrofÃsica de Canarias (IAC) consists of five polarimeters, three of them operating in the sub-band 10?15 GHz, and two in the sub-band 15-20 GHz. The MFI2 instrument is expected to be a full two-three times more sensitive than the former MFI. The microwave complex correlator design has been replaced by a simple correlator design with a digital back-end based on the latest Xilinx FPGAs (ZCU111). During the first half of 2019 the manufacture of the new cryostat was completed and since then the opto-mechanical components have been designed and manufactured. It is expected that the cryogenic front-end will be completed by the end of 2022 along with the FPGA acquisition and observing system. This digital system has been employed to be more robust against stray ground-based and satellite interference, having a frequency resolution of 1 MHz.The MFI2 instrument is being developed by the Instituto de Astrofisica de Canarias (IAC), with an instrumental participation from the Universidad Politecnica de Cartagena (UPCT). Partial financial support is provided by the Spanish Ministry of Science and Innovation (MICINN), under the projects AYA2017-84185-P, IACA15-BE-3707, EQC2018-004918-P and the FEDER Agreement INSIDE-OOCC (ICTS-2019-03-IAC-12). We also acknowledge
financial support of the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S
Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS
Anomalous Microwave Emission (AME) is a significant component of Galactic
diffuse emission in the frequency range -GHz and a new window into
the properties of sub-nanometre-sized grains in the interstellar medium. We
investigate the morphology of AME in the diameter
Orionis ring by combining intensity data from the QUIJOTE experiment at ,
, and GHz and the C-Band All Sky Survey (C-BASS) at GHz,
together with 19 ancillary datasets between and GHz. Maps of
physical parameters at resolution are produced through Markov Chain
Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating
the AME component with a log-normal distribution. AME is detected in excess of
at degree-scales around the entirety of the ring along
photodissociation regions (PDRs), with three primary bright regions containing
dark clouds. A radial decrease is observed in the AME peak frequency from
GHz near the free-free region to GHz in the outer
regions of the ring, which is the first detection of AME spectral variations
across a single region. A strong correlation between AME peak frequency,
emission measure and dust temperature is an indication for the dependence of
the AME peak frequency on the local radiation field. The AME amplitude
normalised by the optical depth is also strongly correlated with the radiation
field, giving an overall picture consistent with spinning dust where the local
radiation field plays a key role.Comment: 19 pages, 7 figures, accepted for publication by MNRA
Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA
We assessed spatio-temporal patterns of diversity in deep-sea sediment communities using metabarcoding. We chose a recently developed eukaryotic marker based on the v7 region of the 18S rRNA gene. Our study was performed in a submarine canyon and its adjacent slope in the Northwestern Mediterranean Sea, sampled along a depth gradient at two different seasons. We found a total of 5,569 molecular operational taxonomic units (MOTUs), dominated by Metazoa, Alveolata and Rhizaria. Among metazoans, Nematoda, Arthropoda and Annelida were the most diverse. We found a marked heterogeneity at all scales, with important differences between layers of sediment and significant changes in community composition with zone (canyon vs slope), depth, and season. We compared the information obtained from metabarcoding DNA and RNA and found more total MOTUs and more MOTUs per sample with DNA (ca. 20% and 40% increase, respectively). Both datasets showed overall similar spatial trends, but most groups had higher MOTU richness with the DNA template, while others, such as nematodes, were more diverse in the RNA dataset. We provide metabarcoding protocols and guidelines for biomonitoring of these key communities in order to generate information applicable to management efforts
- …