4 research outputs found

    Lunar impact flash results and space surveillance activities at Kryoneri Observatory

    Full text link
    We present current and future activities regarding lunar impact flash and NEO observations and satellite tracking from Kryoneri Observatory. In particular, we present results from the ESA-funded NELIOTA program, which has been monitoring the Moon for impact flashes since early 2017. Using the 1.2 m Kryoneri telescope, which is equipped with two high frame-rate cameras recording simultaneously in two optical bands, NELIOTA has recorded over 170 validated lunar impact flashes, while another ~90 have been characterized as suspected. We present statistical results concerning the sizes, the masses and the appearance frequency of the meteoroids in the vicinity of the Earth, as well as the temperatures developed during the impacts. Moreover, we present the capabilities of the Kryoneri telescope as a sensor for satellite tracking and the future plans regarding the provision of high-quality services for both the Planetary Defense activities of ESA (S2P/PDO) and the European Union's Space Surveillance and Tracking programme (EU/SST).Comment: 14 pages, 19 figures. Proceedings of the 2nd NEO and Debris Detection Conference, Darmstadt, Germany, 24-26 January 202

    NELIOTA: ESA's new NEO lunar impact monitoring project with the 1.2m telescope at the National Observatory of Athens

    Full text link
    NELIOTA is a new ESA activity launched at the National Observatory of Athens in February 2015 aiming to determine the distribution and frequency of small near-earth objects via lunar monitoring. The objective of this 3.5 year activity is to design, develop and implement a highly automated lunar monitoring system, which will conduct an observing campaign for 2 years, starting in the Summer 2016, in search of NEO impact flashes on the Moon. The project involves: (i) a complete refurbishment of the 40 year old 1.2m Kryoneri telescope of the National Observatory of Athens, (ii) development of a Lunar imager for the prime focus with two fast-frame sCMOS cameras, and (iii) procurement of servers for data processing and storage. Furthermore, we have developed a software system that controls the telescope and the cameras, processes the images and automatically detects lunar flashes. NELIOTA provides a web-based user interface, where the impact events, after their verification and characterization, will be reported and made available to the scientific community and the general public. The novelty of this project is the dedication of a large, 1.2m telescope for lunar monitoring, which is expected to characterize the frequency and distribution of NEOs weighing as little as a few grams
    corecore