6 research outputs found
Why Isn't the Earth Completely Covered in Water?
If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.U. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion
Insights Into the Mineralogy and Surface Chemistry of Extracellular Biogenic S0 Globules Produced by Chlorobaculum tepidum
Elemental sulfur (S0) is produced and degraded by phylogenetically diverse groups of microorganisms. For Chlorobaculum tepidum, an anoxygenic phototroph, sulfide is oxidized to produce extracellular S0 globules, which can be further oxidized to sulfate. While some sulfur-oxidizing bacteria (e.g., Allochromatium vinosum) are also capable of growth on commercial S0 as an electron donor, C. tepidum is not. Even colloidal sulfur sols, which appear indistinguishable from biogenic globules, do not support the growth of C. tepidum. Here, we investigate the properties that make biogenic S0 globules distinct from abiotic forms of S0. We found that S0 globules produced by C. tepidum and abiotic S0 sols are quite similar in terms of mineralogy and material properties, but the two are distinguished primarily by the properties of their surfaces. C. tepidum’s globules are enveloped by a layer of organics (protein and polysaccharides), which results in a surface that is fundamentally different from that of abiotic S0 sols. The organic coating on the globules appears to slow the aging and crystallization of amorphous sulfur, perhaps providing an extended window of time for microbes in the environment to access the more labile forms of sulfur as needed. Overall, our results suggest that the surface of biogenic S0 globules may be key to cell–sulfur interactions and the reactivity of biogenic S0 in the environment
Bacterially-Mediated Formation of Rock Coatings in Kärkevagge, Swedish Lapland: A Mineralogical and Micro-Environmental Analog for Mars
The search for past or present life on Mars is, for now, limited to surface environments. An often neglected surface environment that could have served as an abode for life and could presently preserve evidence of that life is that of rock coatings. Rock coatings are mineral accretions on rock surfaces. On Earth, they are widespread and occur with considerable chemical diversity. There is growing evidence for a biotic role in their formation on Earth, particularly with respect to rock varnish. As a result, rock varnish has become a target of astrobiological interest on Mars, where varnish-like coatings have been observed. However, a number of coating types compatible with martian mineralogy exist but have yet to be investigated thoroughly. In this dissertation, I present a study of three principle rock coating types from a glacially eroded valley, Kärkevagge, in northern Sweden. The coatings consist of iron films, sulfate crusts, and aluminum glazes, all with primary mineralogies that are compatible with those minerals that have been identified on Mars.
To examine the role of microbiology in these terrestrial rock coatings and what the biotic formation of coatings might tell us about observed coatings on Mars, we asked three basic questions: 1) What microbes inhabit the coatings, 2) What are those microbes contributing to the geochemistry of the coatings, and 3) How are the microbes contributing to the overall formation of the rock coating? To answer these questions, we undertook two bacterial diversity surveys - Sanger sequencing and 454 pyrosequencing. Using the results of these surveys, we were able to assess diversity, richness, and metabolic potential of the communities. Microscopy and spectroscopy were used in order to visualize microbial communities inhabiting the coatings and to observe evidence of biomineralization. Using the answers to those questions - who, what, and how - a conceptual model of coating formation was developed to relate the terrestrial process of biological rock-coating formation to what may have occurred in the martian past
Intricate tunnels in garnets from soils and river sediments in Thailand - Possible endolithic microborings
Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack. The authors acknowledge funding from the Swedish Research Council (Contracts No. 2007-4483 (SB), 2010-3929 (HS), 2012-4364 (MI), and 2013-4290 (SB), 2015-04129 (SS)), Danish National Research Foundation (DNRF53), and Paul Scherrer Institute (20130185) (MI) as well as Swedish National Space Board (Contract No. 83/10 (MI), 121/11 and 198/15 (SS)).</p