50 research outputs found

    Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice

    Get PDF
    Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4(−/−) mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4(−/−) embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4(−/−) mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4(−/−) tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4(−/−) mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis

    Relationship of Stokes Radius to the Rate of Diffusion across Bruch's Membrane

    No full text
    The authors present a novel method to study protein and small-molecule diffusion across Bruch's membrane (BM) as a function of Stokes radius (RS) by simultaneously measuring the flux of multiple solutes ranging in RS from <1.0 to 6.15 nm. Although pig tissue was used in this study, the authors were able to evaluate small enough regions of BM/Ch to permit future studies on rat or mouse tissue, or to compare diffusion across BM/Ch underlying different regions of the retina such as macula versus periphery

    Mutant Fibulin-3 Causes Proteoglycan Accumulation and Impaired Diffusion Across Bruch's Membrane

    No full text
    PURPOSE. The mutation R345W in EFEMP1 (fibulin-3) causes macular degeneration. This study sought to determine whether proteoglycan content and diffusion across Bruch's membrane are altered in Efemp1(ki/ki) mice carrying this mutation or in Efemp1(-/-) mice. METHODS. Proteoglycans in mouse Bruch's membranes were stained with Cupromeronic Blue (CB). Heparan sulfated proteoglycan (HSPG) and chondroitin/dermatan sulfate proteoglycan (C/DSPG) distributions were visualized following treatments with chondroitinase ABC (C-ABC) or nitrous acid. Total sulfated glycosaminoglycans (sGAGs) in Bruch's membrane/choroid (BrM/Ch) were measured with dimethylmethylene blue (DMMB). Matrix metalloprotease (MMP)-2, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-3 were examined by immunofluorescence and quantified using Image J. Molecules with different Stokes radius (R-s) were allowed simultaneously to diffuse through mouse BrM/Ch mounted in a modified Ussing chamber. Samples were quantified using gel exclusion chromatography. RESULTS. HSPGs and C/DSPGs were markedly increased in Efemp1(ki/ki) Bruch's membrane, and MMP-2 and MMP-9 were decreased, but TIMP-3 was increased. Diffusion across Efemp1(ki/ki) Bruch's membrane was impaired. In contrast, the proteoglycan amount in Efemp1(-/-) Bruch's membrane was not significantly different, but the size of proteoglycans was much larger. MMP-2, MMP-3, and TIMP-3 levels were similar to that of Efemp1(+/+) mice, but they were localized diffusely in retinal pigment epithelium (RPE) cells instead of Bruch's membrane. Diffusion across Efemp1(-/-) Bruch's membrane was enhanced. CONCLUSIONS. Mutant fibulin-3 causes proteoglycan accumulation, reduction of MMP-2 and MMP-9, but increase of TIMP-3, and impairs diffusion across Bruch's membrane. Fibulin-3 ablation results in altered sizes of proteoglycans, altered distributions of MMP-2, MMP-9, and TIMP-3, and enhances diffusion across Bruch's membrane.National Institutes of Health [EY13847, EY13160, EY21153]; Edward N. & Della L. Thome Memorial Foundation; Mayo Foundation; Research to Prevent BlindnessOpen Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore