1,704 research outputs found

    Clustering Algorithms for Scale-free Networks and Applications to Cloud Resource Management

    Full text link
    In this paper we introduce algorithms for the construction of scale-free networks and for clustering around the nerve centers, nodes with a high connectivity in a scale-free networks. We argue that such overlay networks could support self-organization in a complex system like a cloud computing infrastructure and allow the implementation of optimal resource management policies.Comment: 14 pages, 8 Figurs, Journa

    Energy-aware Load Balancing Policies for the Cloud Ecosystem

    Full text link
    The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.Comment: 10 Page

    Quantum Error Correction of Time-Correlated Errors

    Get PDF
    The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits ∣0L>\mid 0_L> and ∣1L>\mid 1_L> are entangled states of 2n2^{n} basis states in H2n\mathcal{H}_{2^n}.Comment: 14 pages, 3 figure

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    Non-adiabatic generation of a pure spin current in a 1D quantum ring with spin-orbit interaction

    Full text link
    We demonstrate the theoretical possibility of obtaining a pure spin current in a 1D ring with spin-orbit interaction by irradiation with a non-adiabatic, two-component terahertz laser pulse, whose spatial asymmetry is reflected by an internal dephasing angle Ï•\phi. The stationary solutions of the equation of motion for the density operator are obtained for a spin-orbit coupling linear in the electron momentum (Rashba) and used to calculate the time-dependent charge and spin currents. We find that there are critical values of Ï•\phi at which the charge current disappears, while the spin current reaches a maximum or a minimum value.Comment: 8 pages, 5 figure
    • …
    corecore