81 research outputs found

    Microtubule Organization during the Early Development of the Parthenogenetic Egg of the HymenopteranMuscidifurax uniraptor

    Get PDF
    AbstractThe origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran,Muscidifurax uniraptor.Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase–telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-γ-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm ofMuscidifuraxeggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation

    A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila

    Get PDF
    Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster, which in asp mutants remains diminutive and so prevents migration of the pronuclei

    A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila

    Get PDF
    Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster, which in asp mutants remains diminutive and so prevents migration of the pronuclei

    Drosophila Polo Kinase Is Required for Cytokinesis

    Get PDF
    A number of lines of evidence point to a predominance of cytokinesis defects in spermatogenesis in hypomorphic alleles of the Drosophila polo gene. In the pre-meiotic mitoses, cytokinesis defects result in cysts of primary spermatocytes with reduced numbers of cells that can contain multiple centrosomes. These are connected by a correspondingly reduced number of ring canals, structures formed by the stabilization of the cleavage furrow. The earliest defects during the meiotic divisions are a failure to form the correct mid-zone and mid-body structures at telophase. This is accompanied by a failure to correctly localize the Pavarotti kinesin- like protein that functions in cytokinesis, and of the septin Peanut and of actin to be incorporated into a contractile ring. In spite of these defects, cyclin B is degraded and the cells exit M phase. The resulting spermatids are frequently binuclear or tetranuclear, in which case they develop either two or four axonemes, respectively. A significant proportion of spermatids in which cytokinesis has failed may also show the segregation defects previously ascribed to polo1 mutants. We discuss these findings in respect to conserved functions for the Polo-like kinases in regulating progression through M phase, including the earliest events of cytokinesis

    Klp10A, a Microtubule-Depolymerizing Kinesin-13, Cooperates with CP110 to Control Drosophila Centriole Length

    Get PDF
    Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules [1]. In interphase, it promotes microtubule catastrophe [2, 3, 4]; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux [1, 5]. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus, in both cultured cell lines and the testes, absence of Klp10A leads to longer centrioles that show incomplete 9-fold symmetry at their ends. These structures and associated pericentriolar material undergo fragmentation. We also show that in contrast to mammalian cells where depletion of CP110 leads to centriole elongation [6], in Drosophila cells it results in centriole length diminution that is overcome by codepletion of Klp10A to give longer centrioles than usual. We discuss how loss of centriole capping by CP110 might have different consequences for centriole length in mammalian [6, 7, 8] and insect cells and also relate these findings to the functional interactions between mammalian CP110 and another kinesin-13, Kif24, that in mammalian cells regulates cilium formation

    Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis.

    Get PDF
    Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation

    Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis

    Get PDF
    Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation

    Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles

    Get PDF
    We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication
    corecore