17 research outputs found
Active Carboxylic Acid-Terminated Alkanethiol Self-Assembled Monolayers on Gold Bead Electrodes for Immobilization of Cytochromes c
It is extremely difficult to immobilize cytochrome c (cyt c) on carboxylic acid-terminated alkanethiol self-assembled monolayers (HOOC-SAM) on gold bead electrodes prepared in a hydrogen flame. We found that simple pretreatment of a HOOC-SAM/gold bead electrode by potential cycling in buffer solution in the range ±300 mV prior to immobilization of the protein facilitated stable cyt c binding to HOOC-SAMs. The stability of cyt c on the HOOC-SAMs is independent of the topology of the gold surface
The Redox Couple of the Cytochrome \u3cem\u3ec\u3c/em\u3e Cyanide Complex: The Contribution of Heme Iron Ligation to the Structural Stability, Chemical Reactivity, and Physiological Behavior of Horse Cytochrome \u3cem\u3ec\u3c/em\u3e
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c–cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0′ was −240 mV versus SHE, equivalent to −23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0′, the binding constant of cyanide to the reduced protein was estimated to be 4.7 × 10−3 LM−1 or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 Jmol−1K−1 (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed
Direct Voltammetric Observation of Redox Driven Changes in Axial Coordination and Intramolecular Rearrangement of the Phenylalanine-82-Histidine Variant of Yeast Iso-1-cytochrome c
Direct square-wave and cyclic voltammetric electrochemical examination of the yeast iso-1-cytochrome c Phe82His/Cys102Ser variant revealed the intricacies of redox driven changes in axial coordination, concomitant with intramolecular rearrangement. Electrochemical methods are ideally suited for such a redox study, since they provide a direct and quantitative visualization of specific dynamic events. For the iso-1-cytochrome c Phe82His/Cys102Ser variant, square-wave voltammetry showed that the primary species in the reduced state is the Met80-Fe2+-His18 coordination form, while in the oxidized state the His82-Fe3+-His18 form predominates. The addition or removal of an electron to the appropriate form of this variant serves as a switch to a new molecular form of the cytochrome. Using the 2 × 2 electrochemical mechanism, simulations were done for the cyclic voltammetry experiments at different scan rates. These, in turn, provided relative rate constants for the intramolecular rearrangement/ligand exchange and the equilibrium redox potentials of the participating coordination forms:  kb,AC = 17 s-1 for Met80-Fe3+-His18 → His82-Fe3+-His18 and kf,BD \u3e 10 s-1 for His82-Fe2+-His18 → Met80-Fe2+-His18; E0‘ = 247 mV for Met80-Fe3+/2+-His18 couple, E0‘ = 47 mV for His82-Fe3+/2+-His18 couple, and E0‘ = 176 mV for the cross-reaction couple, His82-Fe3+-His18 + e- → Met80-Fe2+-His18. Thermodynamic parameters, including the entropy of reaction, ΔS0‘Rxn, were determined for the net reduction/rearrangement reaction, His82-Fe3+-His18 + e- → Met80-Fe2+-His18, and compared to those for wild-type cytochrome, Met80-Fe3+-His18 + e- → Met80-Fe2+-His18. For the Phe82His variant mixed redox couple, ΔS0‘Rxn = −80 J/mol·K compared to ΔS0‘Rxn = −52 J/mol·K for the wild-type cyt c couple without rearrangement. Comparison of these entropies indicates that the oxidized His82-Fe3+-His18 form is highly disordered. It is proposed that this high level of disorder facilitates rapid rearrangement to Met80-Fe2+-His18 upon reduction