41 research outputs found
Genipin delays corneal stromal enzymatic digestion
Purpose: To evaluate the use of genipin in delaying enzymatic digestion of corneal stroma.
Methods: Human corneal stromal tissue was treated with genipin, a known chemical crosslinker, and then along with control tissue was subjected to enzymatic digestion with collagenase. The effects of genipin treatment in retarding stromal digestion were analyzed with phase contrast microscopy, a protein quantification assay, second harmonic generation imaging, and transmission electron microscopy.
Results: Genipin increased stromal resistance to enzymatic digestion when compared with untreated stroma. A morphologic analysis and protein quantification showed increased stromal resistance to enzymatic digestion once stromal tissue was treated with genipin. Second harmonic generation imaging revealed persistent fibrillar collagen signaling in genipin-treated tissue in contrast with untreated tissue suggesting that genipin retards collagenolysis.
Conclusions: Genipin increases stromal resistance to enzymatic digestion in controlled experiments as demonstrated by protein quantification studies and through morphologic imaging.
Translational Relevance: This study explores the novel use of genipin in delaying enzymatic stromal digestion. Delaying stromal melting in the setting of corneal infectious or autoimmune keratitis can potentially decrease clinical morbidity
Severity-adjusted evaluation of liver transplantation on health outcomes in urea cycle disorders
Purpose: Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. Methods: We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into “severe” and “attenuated” categories based on the genotype-specific and validated in vitro enzyme activity. Results: LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. Conclusion: Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx—as currently performed—was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.</p
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers
Abstract Introduction Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
Ocular adverse events following vaccination: overview and update.
The Food and Drug Administration has licensed, approved, and expanded guidelines for dozens of vaccines since 2010. Although advancements in biotechnology have made vaccines more effective and safer, none are completely free from adverse effects. Many vaccines have been implicated in causing ocular adverse events based on the temporal association of exposure and putative complication. Determination of causality is difficult. We provide an overview of vaccine side effects and also examine the English literature and the Vaccine Adverse Events Reporting System (VAERS) from 2010 through 2020 for vaccine-implicated ocular adverse events. While reactions of eyelids and conjunctiva are commonly reported, the most frequently implicated serious adverse events are optic neuritis and various patterns of intraocular inflammation. Live attenuated vaccines have the potential to cause ocular infection from vaccine-strain organisms, particularly in those immunosuppressed. While postmarketing registries for suspect vaccination adverse events, such as VAERS, are unable to determine causal associations, they are a mainstay in signaling suspected trends that require investigation. The majority of probable and possible serious ocular adverse effects are distinctly uncommon
Craniopharyngioma causing bilateral vision loss 4 months after unremarkable magnetic resonance imaging of the brain
A 65-year-old man developed bilateral vision loss 4 months after magnetic resonance imaging demonstrated no lesion in the vicinity of the optic chiasm, hypothalamus, and suprasellar tissues. Repeat computed tomography 3 months later showed a predominantly cystic mass of the suprasellar cistern with extension into the anterior third ventricle, which histologically was a craniopharyngioma. The clinical course of this case fuels the controversy whether craniopharyngiomas arise from embryonic rests or can be acquired. From a clinical perspective, it raises questions about when to obtain imaging studies dedicated to the chiasm and the appropriate interval in which a scan should be repeated to exclude structural causes of bilateral vision loss
Craniopharyngioma causing Bilateral Vision Loss 4 Months after Unremarkable Magnetic Resonance Imaging of the Brain
A 65-year-old man developed bilateral vision loss 4 months after magnetic resonance imaging demonstrated no lesion in the vicinity of the optic chiasm, hypothalamus, and suprasellar tissues. Repeat computed tomography 3 months later showed a predominantly cystic mass of the suprasellar cistern with extension into the anterior third ventricle, which histologically was a craniopharyngioma. The clinical course of this case fuels the controversy whether craniopharyngiomas arise from embryonic rests or can be acquired. From a clinical perspective, it raises questions about when to obtain imaging studies dedicated to the chiasm and the appropriate interval in which a scan should be repeated to exclude structural causes of bilateral vision loss
Craniopharyngioma causing Bilateral Vision Loss 4 Months after Unremarkable Magnetic Resonance Imaging of the Brain
A 65-year-old man developed bilateral vision loss 4 months after magnetic resonance imaging demonstrated no lesion in the vicinity of the optic chiasm, hypothalamus, and suprasellar tissues. Repeat computed tomography 3 months later showed a predominantly cystic mass of the suprasellar cistern with extension into the anterior third ventricle, which histologically was a craniopharyngioma. The clinical course of this case fuels the controversy whether craniopharyngiomas arise from embryonic rests or can be acquired. From a clinical perspective, it raises questions about when to obtain imaging studies dedicated to the chiasm and the appropriate interval in which a scan should be repeated to exclude structural causes of bilateral vision loss