4 research outputs found

    E Unibus Plurum: Genomic Analysis of an Experimentally Evolved Polymorphism in Escherichia coli

    Get PDF
    Microbial populations founded by a single clone and propagated under resource limitation can become polymorphic. We sought to elucidate genetic mechanisms whereby a polymorphism evolved in Escherichia coli under glucose limitation and persisted because of cross-feeding among multiple adaptive clones. Apart from a 29 kb deletion in the dominant clone, no large-scale genomic changes distinguished evolved clones from their common ancestor. Using transcriptional profiling on co-evolved clones cultured separately under glucose-limitation we identified 180 genes significantly altered in expression relative to the common ancestor grown under similar conditions. Ninety of these were similarly expressed in all clones, and many of the genes affected (e.g., mglBAC, mglD, and lamB) are in operons coordinately regulated by CRP and/or rpoS. While the remaining significant expression differences were clone-specific, 93% were exhibited by the majority clone, many of which are controlled by global regulators, CRP and CpxR. When transcriptional profiling was performed on adaptive clones cultured together, many expression differences that distinguished the majority clone cultured in isolation were absent, suggesting that CpxR may be activated by overflow metabolites removed by cross-feeding strains in co-culture. Relative to their common ancestor, shared expression differences among adaptive clones were partly attributable to early-arising shared mutations in the trans-acting global regulator, rpoS, and the cis-acting regulator, mglO. Gene expression differences that distinguished clones may in part be explained by mutations in trans-acting regulators malT and glpK, and in cis-acting sequences of acs. In the founder, a cis-regulatory mutation in acs (acetyl CoA synthetase) and a structural mutation in glpR (glycerol-3-phosphate repressor) likely favored evolution of specialists that thrive on overflow metabolites. Later-arising mutations that led to specialization emphasize the importance of compensatory rather than gain-of-function mutations in this system. Taken together, these findings underscore the importance of regulatory change, founder genotype, and the biotic environment in the adaptive evolution of microbes

    \u3ci\u3eEx Uno Plures\u3c/i\u3e: Clonal Reinforcement Drives Evolution of a Simple Microbial Community

    Get PDF
    A major goal of genetics is to define the relationship between phenotype and genotype, while a major goal of ecology is to identify the rules that govern community assembly. Achieving these goals by analyzing natural systems can be difficult, as selective pressures create dynamic fitness landscapes that vary in both space and time. Laboratory experimental evolution offers the benefit of controlling variables that shape fitness landscapes, helping to achieve both goals. We previously showed that a clonal population of E. coli experimentally evolved under continuous glucose limitation gives rise to a genetically diverse community consisting of one clone, CV103, that best scavenges but incompletely utilizes the limiting resource, and others, CV101 and CV116, that consume its overflow metabolites. Because this community can be disassembled and reassembled, and involves cooperative interactions that are stable over time, its genetic diversity is sustained by clonal reinforcement rather than by clonal interference. To understand the genetic factors that produce this outcome, and to illuminate the community’s underlying physiology, we sequenced the genomes of ancestral and evolved clones. We identified ancestral mutations in intermediary metabolism that may have predisposed the evolution of metabolic interdependence. Phylogenetic reconstruction indicates that the lineages that gave rise to this community diverged early, as CV103 shares only one Single Nucleotide Polymorphism with the other evolved clones. Underlying CV103’s phenotype we identified a set of mutations that likely enhance glucose scavenging and maintain redox balance, but may do so at the expense of carbon excreted in overflow metabolites. Because these overflow metabolites serve as growth substrates that are differentially accessible to the other community members, and because the scavenging lineage shares only one SNP with these other clones, we conclude that this lineage likely served as an ‘‘engine’’ generating diversity by creating new metabolic niches, but not the occupants themselves

    Coupled induction of prophage and virulence factors during tick transmission of the Lyme disease spirochete

    No full text
    The alternative sigma factor RpoS of Borrelia burgdorferi regulates a pathway implicated in tick transmission, mammalian infectivity and persistent infection. Here, the authors characterise the role of the RpoS negative regulator bbd18 and show that RpoS also controls induction of endogenous prophage
    corecore