7,901 research outputs found

    Stretching of proteins in a uniform flow

    Full text link
    Stretching of a protein by a fluid flow is compared to that in a force-clamp apparatus. The comparison is made within a simple topology-based dynamical model of a protein in which the effects of the flow are implemented using Langevin dynamics. We demonstrate that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.Comment: J. Chem. Phys. (in press

    Concurrence of mixed multi-partite quantum states

    Full text link
    We propose generalizations of concurrence for multi-partite quantum systems that can distinguish qualitatively distinct quantum correlations. All introduced quantities can be evaluated efficiently for arbitrary mixed sates

    Anomalous heat-kernel decay for random walk among bounded random conductances

    Get PDF
    We consider the nearest-neighbor simple random walk on Zd\Z^d, d2d\ge2, driven by a field of bounded random conductances ωxy[0,1]\omega_{xy}\in[0,1]. The conductance law is i.i.d. subject to the condition that the probability of ωxy>0\omega_{xy}>0 exceeds the threshold for bond percolation on Zd\Z^d. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the 2n2n-step return probability Pω2n(0,0)P_\omega^{2n}(0,0). We prove that Pω2n(0,0)P_\omega^{2n}(0,0) is bounded by a random constant times nd/2n^{-d/2} in d=2,3d=2,3, while it is o(n2)o(n^{-2}) in d5d\ge5 and O(n2logn)O(n^{-2}\log n) in d=4d=4. By producing examples with anomalous heat-kernel decay approaching 1/n21/n^2 we prove that the o(n2)o(n^{-2}) bound in d5d\ge5 is the best possible. We also construct natural nn-dependent environments that exhibit the extra logn\log n factor in d=4d=4. See also math.PR/0701248.Comment: 22 pages. Includes a self-contained proof of isoperimetric inequality for supercritical percolation clusters. Version to appear in AIHP + additional correction

    The Consistent Newtonian Limit of Einstein's Gravity with a Cosmological Constant

    Get PDF
    We derive the `exact' Newtonian limit of general relativity with a positive cosmological constant Λ\Lambda. We point out that in contrast to the case with Λ=0\Lambda = 0 , the presence of a positive Λ\Lambda in Einsteins's equations enforces, via the condition Φ1| \Phi | \ll 1, on the potential Φ\Phi, a range Rmax(Λ)rRmin(Λ){\cal R}_{max}(\Lambda) \gg r \gg {\cal R}_{min} (\Lambda), within which the Newtonian limit is valid. It also leads to the existence of a maximum mass, Mmax(Λ){\cal M}_{max}(\Lambda). As a consequence we cannot put the boundary condition for the solution of the Poisson equation at infinity. A boundary condition suitably chosen now at a finite range will then get reflected in the solution of Φ\Phi provided the mass distribution is not spherically symmetric.Comment: Latex, 15 pages, no figures, errors correcte

    Majorana neutrino magnetic moments

    Full text link
    The presence of trilinear R-parity violating interactions in the MSSM lagrangian leads to existence of quark-squark and lepton-slepton loops which generate mass of the neutrino. By introducing interaction with an external photon the magnetic moment is obtained. We derive bounds on that quantity being around one order of magnitude stronger than those present in the literature.Comment: I've decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200

    Cosmic Archaeology with Gravitational Waves from Cosmic Strings

    Full text link
    Cosmic strings are generic cosmological predictions of many extensions of the Standard Model of particle physics, such as a U(1)U(1)^\prime symmetry breaking phase transition in the early universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early universe.Comment: 6 pages, 3 figure
    corecore