11 research outputs found

    Scanning Tunneling Spectroscopy on the novel superconductor CaC6

    Full text link
    We present scanning tunneling microscopy and spectroscopy of the newly discovered superconductor CaC6_6. The tunneling conductance spectra, measured between 3 K and 15 K, show a clear superconducting gap in the quasiparticle density of states. The gap function extracted from the spectra is in good agreement with the conventional BCS theory with Δ(0)\Delta(0) = 1.6 ±\pm 0.2 meV. The possibility of gap anisotropy and two-gap superconductivity is also discussed. In a magnetic field, direct imaging of the vortices allows to deduce a coherence length in the ab plane ξab≃\xi_{ab}\simeq 33 nm

    Linear and nonlinear electrodynamic response of bulk CaC6 in the microwave regime

    Full text link
    The linear and nonlinear response to a microwave electromagnetic field of two c-axis oriented polycrystalline samples of the newly discovered superconductor CaC6 (Tc = 11.5 K) is studied in the superconducting state down to 2 K. The surface resistance Rs and the third order intermodulation distortion, arising from a two-tone excitation, have been measured as a function of temperature and microwave circulating power. Experiments are carried out using a dielectrically loaded copper cavity operating at 7 GHz in a "hot finger" configuration. The results confirm recent experimental findings that CaC6 behaves as a weakly-coupled, fully gapped, superconductor. The weak power dependence of Rs encourages a further investigation of this novel superconductor as a possible alternative to Nb in specific microwave applications.Comment: 8 pages, 4 figures, submitted to Appl. Phys. Let

    Competing magnetic interactions in the graphite-intercalation compound Li0.25Eu1.95C6

    No full text
    International audienceWe present an extensive study of the magnetic properties of the new intercalation compound Li0.25Eu1.95C6 Performed by dc magnetization, ac susceptibility, muon-spin and Mossbauer spectroscopy measurements as a function of temperature. The experimental results indicate that the magnetic behaviour of this compound is determined by the competition between magnetic inter- and intro-cluster correlations. The former are mainly due to ferromagnetic-like exchange interactions between Eu spins located between two graphene planes (at high temperature) or surrounding them (at low temperature). The latter correlations, instead, seem to arise from low-temperature antiferromagnetic-like exchange interactions between small magnetic intercalated domains (SMIDs)

    Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries

    No full text
    Polymerization-induced phase separation of nanoparticle-filled solution is demonstrated as a simple approach to control the structure of porous composites. These composites are subsequently demonstrated as the active component for sodium ion battery anode. To synthesize the composites, we dissolved/dispersed titanium oxide (anatase) nanoparticles (for sodium insertion) and poly(hydroxybutyl methacrylate) (PHBMA, porogen) in furfuryl alcohol (carbon precursor) containing a photoacid generator (PAG). UV exposure converts the PAG to a strong acid that catalyzes the furfuryl alcohol polymerization. This polymerization simultaneously decreases the miscibility of the PHBMA and reduces the mobility in the mixture to kinetically trap the phase separation. Carbonization of this polymer composite yields a porous nanocomposite. This nanocomposite exhibits nearly 3-fold greater gravimetric capacity in Na-ion batteries than the same titanium oxide nanoparticles that have been coated with carbon. This improved performance is attributed to the morphology as the carbon content in the composite is five times that of the coated nanoparticles. The porous composite materials exhibit stable cyclic performance. Moreover, the battery performance using materials from this polymerization-induced phase separation method is reproducible (capacity within 10% batch-to-batch). This simple fabrication methodology may be extendable to other systems and provides a facile route to generate reproducible hierarchical porous morphology that can be beneficial in energy storage applications
    corecore