1,836 research outputs found

    A magnetic lens for cold atoms controlled by a rf field

    Full text link
    We report on a new type of magnetic lens that focuses atomic clouds using a static inhomogeneous magnetic field in combination with a radio-frequency field. The experimental study is performed with a cloud of cold cesium atoms. The rf field adiabatically deforms the magnetic potential of a coil and therefore changes its focusing properties. The focal length can be tuned precisely by changing the rf frequency value. Depending on the rf antenna position relative to the DC magnetic profile, the focal length of the atomic lens can be either decreased or increased by the rf field

    Resonant demagnetization of a dipolar BEC in a 3D optical lattice

    Get PDF
    We study dipolar relaxation of a chromium BEC loaded into a 3D optical lattice. We observe dipolar relaxation resonances when the magnetic energy released during the inelastic collision matches an excitation towards higher energy bands. A spectroscopy of these resonances for two orientations of the magnetic field provides a 3D band spectroscopy of the lattice. The narrowest resonance is registered for the lowest excitation energy. Its line-shape is sensitive to the on-site interaction energy. We use such sensitivity to probe number squeezing in a Mott insulator, and we reveal the production of three-body states with entangled spin and orbital degrees of freedom.Comment: 5 pages, 3 Figures, Supplemental Materia

    All-Optical Production of Chromium Bose-Einstein Condensates

    Full text link
    We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by combining the use of Radio Frequency (RF) frequency sweeps and depumping towards the ^5S_2 state. The atoms are then pumped to the absolute ground state, and transferred into a crossed FORT in which they are evaporated. The fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost pure condensate.Comment: 4 pages, 4 figure

    Development of probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory

    Get PDF
    This report demonstrates a probabilistic quantitative pathway analysis model that can be used in risk assessment for plant pest introduction into EU territory on a range of edible commodities (apples, oranges, stone fruits and wheat). Two types of model were developed: a general commodity model that simulates distribution of an imported infested/infected commodity to and within the EU from source countries by month; and a consignment model that simulates the movement and distribution of individual consignments from source countries to destinations in the EU. The general pathway model has two modules. Module 1 is a trade pathway model, with a Eurostat database of five years of monthly trade volumes for each specific commodity into the EU28 from all source countries and territories. Infestation levels based on interception records, commercial quality standards or other information determine volume of infested commodity entering and transhipped within the EU. Module 2 allocates commodity volumes to processing, retail use and waste streams and overlays the distribution onto EU NUTS2 regions based on population densities and processing unit locations. Transfer potential to domestic host crops is a function of distribution of imported infested product and area of domestic production in NUTS2 regions, pest dispersal potential, and phenology of susceptibility in domestic crops. The consignment model covers the several routes on supply chains for processing and retail use. The output of the general pathway model is a distribution of estimated volumes of infested produce by NUTS2 region across the EU28, by month or annually; this is then related to the accessible susceptible domestic crop. Risk is expressed as a potential volume of infested fruit in potential contact with an area of susceptible domestic host crop. The output of the consignment model is a volume of infested produce retained at each stage along the specific consignment trade chain

    Accumulation and thermalization of cold atoms in a finite-depth magnetic trap

    Get PDF
    We experimentally and theoretically study the continuous accumulation of cold atoms from a magneto-optical trap (MOT) into a finite depth trap, consisting in a magnetic quadrupole trap dressed by a radiofrequency (RF) field. Chromium atoms (52 isotope) in a MOT are continuously optically pumped by the MOT lasers to metastable dark states. In presence of a RF field, the temperature of the metastable atoms that remain magnetically trapped can be as low as 25 microK, with a density of 10^17 atoms.m-3, resulting in an increase of the phase-space density, still limited to 7.10^-6 by inelastic collisions. To investigate the thermalization issues in the truncated trap, we measure the free evaporation rate in the RF-truncated magnetic trap, and deduce the average elastic cross section for atoms in the 5D4 metastable states, equal to 7.0 10^-16m2.Comment: 9 pages, 10 Figure

    Toward a Common Framework and Database of Materials for Soft Robotics

    Get PDF
    To advance the field of soft robotics, a unified database of material constitutive models and experimental characterizations is of paramount importance. This will facilitate the use of finite element analysis to simulate their behavior and optimize the design of soft-bodied robots. Samples from seventeen elastomers, namely Body Double™ SILK, Dragon Skin™ 10 MEDIUM, Dragon Skin 20, Dragon Skin 30, Dragon Skin FX-Pro, Dragon Skin FX-Pro + Slacker, Ecoflex™ 00–10, Ecoflex 00–30, Ecoflex 00–50, Rebound™ 25, Mold Star™ 16 FAST, Mold Star 20T, SORTA-Clear™ 40, RTV615, PlatSil® Gel-10, Psycho Paint®, and SOLOPLAST 150318, were subjected to uniaxial tensile tests according to the ASTM D412 standard. Sample preparation and tensile test parameters are described in detail. The tensile test data are used to derive parameters for hyperelastic material models using nonlinear least-squares methods, which are provided to the reader. This article presents the mechanical characterization and the resulting material properties for a wide set of commercially available hyperelastic materials, many of which are recognized and commonly applied in the field of soft robotics, together with some that have never been characterized. The experimental raw data and the algorithms used to determine material parameters are shared on the Soft Robotics Materials Database GitHub repository to enable accessibility, as well as future contributions from the soft robotics community. The presented database is aimed at aiding soft roboticists in designing and modeling soft robots while providing a starting point for future material characterizations related to soft robotics research

    Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer

    Get PDF
    Thermochemical biomass-to-fuel conversion requires an increased hydrogen concentration in the syngas derived from gasification, which is currently achieved by water–gas-shift reaction and CO2 removal. State-of-the-art biomass-to-fuels convert less than half of the biomass carbon with the remaining emitted as CO2. Full conversion of biomass carbon can be achieved by integrating solid-oxide electrolyzer with different concepts: (1) steam electrolysis with the hydrogen produced injected into syngas, and (2) co-electrolysis of CO2 and H2O to convert the CO2 captured from the syngas. This paper investigates techno-economically steam- or co-electrolysis-based biomass-to-fuel processes for producing synthetic natural gas, methanol, dimethyl ether and jet fuel, considering system-level heat integration and optimal placement of steam cycles for heat recovery. The results show that state-of-the-art biomass-to-fuels achieve similar energy efficiencies of 48–51% (based on a lower heating value) for the four different fuels. The integrated concept with steam electrolysis achieves the highest energy efficiency: 68% for synthetic natural gas, 64% for methanol, 63% for dimethyl ether, and 56% for jet fuel. The integrated concept with co-electrolysis can enhance the state-of-the-art energy efficiency to 66% for synthetic natural gas, 61% for methanol, and 54% for jet fuel. The biomass-to-dimethyl ether with co-electrolysis only reaches an efficiency of 49%, due to additional heat demand. The levelized cost of the product of the integrated concepts highly depends on the price and availability of renewable electricity. The concept with co-electrolysis allows for additional operation flexibility without renewable electricity, resulting in high annual production. Thus, with limited annual available hours of renewable electricity, biomass-to-fuel with co-electrolysis is more economically convenient than that with steam electrolysis. For a plant scale of 60 MWth biomass input with the renewable electricity available for 1800 h annually, the levelized cost of product of biomass-to-synthesis-natural-gas with co-electrolysis is 35 $/GJ, 20% lower than that with steam-electrolysis
    • …
    corecore