124 research outputs found

    Cellular and molecular mediators of bone metastatic lesions

    Get PDF
    Bone is the preferential site of metastasis for breast and prostate tumor. Cancer cells establish a tight relationship with the host tissue, secreting factors that stimulate or inhibit bone cells, receiving signals generated from the bone remodeling activity, and displaying some features of bone cells. This interplay between tumor and bone cells alters the physiological bone remodeling, leading to the generation of a vicious cycle that promotes bone metastasis growth. To prevent the skeletal-related events (SRE) associated with bone metastasis, approaches to inhibit osteoclast bone resorption are reported. The bisphosphonates and Denosumab are currently used in the treatment of patients affected by bone lesions. They act to prevent or counteract the SRE, including pathologic fractures, spinal cord compression, and pain associated with bone metastasis. However, their primary effects on tumor cells still remain controversial. In this review, a description of the mechanisms leading to the onset of bone metastasis and clinical approaches to treat them are described

    Defective DNA repair mechanisms in prostate cancer: impact of olaparib

    Get PDF
    The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) mutations are implicated in the highest risk of prostate cancer (PC) predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP) proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC

    Adjuvant radiation therapy in stage I seminoma: 20 years of oncologic results

    Get PDF
    Aim: To report long term oncologic outcomes after adjuvant radiotherapy (RT) for stage I seminoma. Method: We reviewed the complete data set for all patients treated at our institute between 1988 and 2005 for stage I seminoma with adjuvant RT after radical orchiectomy. Results: A total of 85 patients were included. The median follow-3up was 15 years. The 20-3year overall survival (OS) and relapse free survival (RFS) were 92% and 96.3%, respectively. No severe acute and late complications were recorded. Overall 5.9% of patients had a second unrelated malignancy. Conclusion: Adjuvant RT is an efficacious and safe treatment in stage I seminom

    Radiation therapy and serum salivary amylase in head and neck cancer

    Get PDF
    Radiation therapy (RT) is a valid treatment option for head and neck cancer (HNC). The risk of RT-induced toxicities is significant, especially due to extended treatment fields. The raise in amylase activity is strictly dependent on the volume of salivary glands included in the irradiated target volume and it is firmly related to the dose. The aim of this review is to report the effects on salivary amylase activity after radiation exposure of salivary glands, in patients with HNC

    Successful role of adjuvant radiotherapy in a rare case of tracheal inflammatory myofibroblastic tumor: a case report

    Get PDF
    BACKGROUND:: Inflammatory myofibroblastic tumor (IMT) is a rare benign cancer that can express a more aggressive phenotype related to the genetic mutation of the anaplastic lymphoma kinase receptor (ALK). Involvement of trachea is extremely rare and due to the clinical and radiologic nonspecificity, the definitive diagnosis is based on the histologic evaluation of tissue specimens. Total surgical excision is curative and chemotherapy or radiotherapy has been employed in the treatment of unresectable tumors or as adjuvant therapies. CASE PRESENTATION:: The case described here is being reported because of the rare tracheal location and the atypical treatment approach used for an ALK-positive IMT. A 7-week pregnant woman voluntary interrupted pregnancy and underwent total surgical excision that resulted to have close margins. Although ALK-positive expression indicated the use of ALK inhibitors, she refused any type of adjuvant therapy that could affect ovarian function. Thus, 3D conformational external beam radiotherapy was performed with a daily dose of 180 cGy, 5 times per week, up to 45 Gy at the level of trachea. A total of 62 months of follow-up showed and no signs of disease recurrence or late radiation therapy-related toxicity. CONCLUSIONS: This report describes an extremely rare case of a tracheal IMT, underlying the key role of radiotherapy as adjuvant treatment able to definitively cure IMT, limiting systemic chemotherapy-related toxicity

    Phenotypic characterization of human prostatic stromal cells in primary cultures derived from human tissue samples

    Get PDF
    Emerging evidence has shown that the tumor microenvironment plays a crucial role in prostate cancer (PCa) development and progression. However, the mechanism(s) through which stromal cells regulate epithelial cells and the differences among prostatic stromal cells of different histological/pathological origin in PCa progression remain unclear. Therefore, it is necessary to characterize the stromal cell populations present in benign prostatic hyperplasia (BPH) and PCa. To this end, we used cultures from stromal cells obtained from BPH-derived (15 cases) and PCa-derived (30 cases) primary cultures. In culture, stromal cells are a mixture of fibroblasts, myofibroblasts (MFs) and muscle cells. Fibroblasts are characterized for the expression of vimentin, MFs for the co-expression of α-smooth muscle actin (α-SMA) and vimentin, whereas muscle cells for the expression of α-SMA and desmin. Fibroblasts were present in large amounts in the BPH-compared to the PCa-derived cultures, whereas MFs were more representative of PCa-as opposed to BPH-derived cultures. Some α-SMA-positive cells retained the expression of basal cytokeratin K14. This population was defined as myoepithelial cells and was associated with senescent cultures. The percentage of MFs was higher in high-grade compared to moderate-and low-grade PCa-derived cultures, whereas the number of myoepithelial cells was lower in high-grade compared to moderate-and low-grade PCa-derived cultures. In addition, we analyzed the expression of p75NTR, as well as the expression of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of MMPs (TIMPs). p75NTR expression was elevated in the stromal cultures derived from PCa compared to those derived from BPH and in cultures derived from cases with Gleason scores.7 compared to those derived from cases with Gleason scores <7, as well as in cultures with a high concentration of MFs compared to those with a high concentration of fibroblasts. MMP-2 was secreted by all primary cultures, whereas MMP-9 secretion was observed only in some PCa-derived stromal cells, when the percentage of MFs was significantly higher compared to BPH-derived cultures. TIMP1, TIMP2 and TIMP3 were secreted in elevated amounts in the BPH-compared to the PCa-derived stromal cultures, suggesting the differential regulation of extracellular matrix (ECM) degradation. When we used 22rv1 and PC3 PCa xenograft models for the isolation and characterization of murine cancer-associated fibroblasts (CAFs) we noted that the angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, vimentin, tenascin, calponin, desmin and Masson's trichrome. In conclusion, MF stromal cells from PCa participate in the progression and metastasis of PCa, modualting inflammation, angiogenesis and epithelial cancer cell proliferation

    Doses, fractionations, constraints for stereotactic radiotherapy

    Get PDF
    This paper describes how to select the most appropriate stereotactic radiotherapy (SRT) dose and fractionation scheme according to lesion size and site, organs at risk (OARs) proximity and the biological effective dose. In single-dose SRT, 15–34 Gy are generally used while in fractionated SRT 30 and 75 Gy in 2–5 fractions are administered. The ICRU Report No. 91, which is specifically dedicated to SRT treatments, provided indications for dose prescription (with its definition and essential steps), dose delivery and optimal coverage which was defined as the best planning target volume coverage that can be obtained in the irradiated district. Calculation algorithms and OAR dose constraints are provided as well as treatment planning system characteristics, suggested beam energy and multileaf collimator leaf size. Finally, parameters for irradiation geometry and plan quality are also reported.

    Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer

    Get PDF
    The high affinity nerve growth factor (NGF) NGF receptor, p75NTR, is a member of the tumor necrosis factor (TNF) receptor superfamily that shares a conserved intracellular death domain capable of inducing apoptosis and suppressing growth in prostate epithelial cells. Expression of this receptor is lost as prostate cancer progresses and is minimal in established prostate cancer cell lines. We aimed to verify the role of p75NTR in the azacitidine-mediated antitumor effects on 22Rv1 and PC3 androgen-independent prostate cancer cells. In the present study, we reported that the antiproliferative and pro-apoptotic effects of 5-azacytidine (azacitidine) were more marked in the presence of physiological concentrations of NGF and were reduced when a blocking p75NTR antibody or the selective p75NTR inhibitor, Ro 08-2750, were used. Azacitidine increased the expression of p75NTR without interfering with the expression of the low affinity NGF receptor TrkA and induced caspase 9-dependent caspase 3 activity. Taken together, our results suggest that the NGF network could be a candidate for future pharmacological manipulation in aggressive prostate cancer

    Key role of MEK/ERK pathway in sustaining tumorigenicity and in vitro radioresistance of embryonal rhabdomyosarcoma stem-like cell population

    Get PDF
    The identification of signaling pathways that affect the cancer stem-like phenotype may provide insights into therapeutic targets for combating embryonal rhabdomyosarcoma. The aim of this study was to investigate the role of the MEK/ERK pathway in controlling the cancer stem-like phenotype using a model of rhabdospheres derived from the embryonal rhabdomyosarcoma cell line (RD). Rhabdospheres enriched in cancer stem like cells were obtained growing RD cells in non adherent condition in stem cell medium. Stem cell markers were evaluated by FACS analysis and immunoblotting. ERK1/2, myogenic markers, proteins of DNA repair and bone marrow X-linked kinase (BMX) expression were evaluated by immunoblotting analysis. Radiation was delivered using an x-6 MV photon linear accelerator. Xenografts were obtained in NOD/SCID mice by subcutaneously injection of rhabdosphere cells or cells pretreated with U0126 in stem cell medium. MEK/ERK inhibitor U0126 dramatically prevented rhabdosphere formation and down-regulated stem cell markers CD133, CXCR4 and Nanog expression, but enhanced ALDH, MAPK phospho-active p38 and differentiative myogenic markers. By contrast, MAPK p38 inhibition accelerated rhabdosphere formation and enhanced phospho-active ERK1/2 and Nanog expression. RD cells, chronically treated with U0126 and then xeno-transplanted in NOD/SCID mice, delayed tumor development and reduced tumor mass when compared with tumor induced by rhabdosphere cells. U0126 intraperitoneal administration to mice bearing rhabdosphere-derived tumors inhibited tumor growth . The MEK/ERK pathway role in rhabdosphere radiosensitivity was investigated in vitro. Disassembly of rhabdospheres was induced by both radiation or U0126, and further enhanced by combined treatment. In U0126-treated rhabdospheres, the expression of the stem cell markers CD133 and CXCR4 decreased and dropped even more markedly following combined treatment. The expression of BMX, a negative regulator of apoptosis, also decreased following combined treatment, which suggests an increase in radiosensitivity of rhabdosphere cells. Our results indicate that the MEK/ERK pathway plays a prominent role in maintaining the stem-like phenotype of RD cells, their survival and their innate radioresistance. Thus, therapeutic strategies that target cancer stem cells, which are resistant to traditional cancer therapies, may benefit from MEK/ERK inhibition combined with traditional radiotherapy, thereby providing a promising therapy for embryonal rhabdomyosarcoma
    • …
    corecore